
ELECTE
JUN' PIA,

SEARCHING FOR PLANS USING
A HIERARCHY OF LEARNED MACROS

AND SELECTIVE REUSE

414, ý-kDISSERTATION
* Douglas Earl Dyer

Captain, USAF

AFIT/DS/ENG/94J-O1

94-19373-

DEPARTMENT OF-THE AIR FORCE
AM UNIVERSITY

FORCE INSTITUTE OF TECHNOLOGY

~ -; Wright-Patterson Air Force Base, Ohio

~A 2 24 001

AFrr/DS/ENG/94J-01

SEARCHING FOR PLANS USING

A HIERARCHY OF LEARNED MACROS

AND SELECTIVE REUSE

DISSERTATION
Douglas Earl Dyer

Captain, USAF

AFIT/DS/ENG/94J-01

Approved for public release; distribution unlimited

AFrT/DS/ENGW94J-01

SEARCHING FOR PLANS USING

A HIERARCHY OF LEARNED MACROS

AND SELECTIVE REUSE

DISSERTATION

Presented to the Faculty of the Graduate School of Engineering

of the Air Force Institute of Technology

Air University

In Partial Fulfillment of the

Requirements for the Degree of

Doctor of Philosophy

Accession 7or
ITIS GRA&I
DTIC TAB

Douglas Earl Dyer, B.S.Ch.E., B.S.EE., M.S.C.S Unannow•med 0
Justificatlon

Captain, USAF
By
Di utri buti!ot•..

Availability Cdes

June, 1994 Mist wSp wol

Approved for public release; distribution unlimited

AFIT/DS/ENG/94J-01

SEARCHING FOR PLANS USING

A HIERARCHY OF LEARNED MACROS

AND SELECTIVE REUSE

Douglas Earl Dyer, B.S.Ch.E., B.S.E.E., M.S.C.S

Captain. USAF

Approved:

Of,,! 2- G 7, Iy5h1
J. S. PRZEMMIECKI
Insdatit Senior Dean and

Scientific Advisor

Acknowledgements

Given the difficulty of any doctoral program, many people must be amazed that anyone

would ever pursue a Ph.D. Indeed, it takes a warped system of values to think that doctoral

research will lead to happiness. The hard work and numerous setbacks in an increasingly

narrow and deep domain are only occasionally offset by some really new and interesting

knowledge. Ah, but what a thing this knowledge is, at least if you have the warped values of

a researcher! I would like to sincerely thank my friends Dr Nort Fowler and Dr Steve Cross

for sufficiently warping my value system during an intense and fruitful search for knowledge

at the Rome Laboratory.

I thank my advisor and friend, Dr Gregg Gunsch, whose gentle guidance and firm

support have always helped and encouraged me greatly. Dr Gunsch expanded my vision in

many ways. Without complaint, he gave me many hours and many ideas; I enjoyed our time

together immensely. I am also quite grateful to Dr Frank Brown, whose patience and grace I

find admirable. Dr Brown challenged and inspired me to do some of my best work at AFIT.

My other committee members, Dr Mark Roth, Dr Gene Santos, and Dr John Borsi, deserve

special acknowledgement for their helpful insights and recommendations. I would like to

thank Dr Rao Kambhampati and Dr Steve Minton for answering questions at various points in

my research. Alex Kilpatrick and Mark Gerken have my gratitude for listening to my ideas,

as does Ken Fielding for that and so many other things.

I owe a great debt to my wife, Susan and my daughters, Sarah and Kristen. They never

failed to support me, and I would not have succeeded without their support. I am also indebted

to the United States Air Force for its investment in my education and for the life my family

and I enjoy.

Douglas Earl Dyer

in

S

Table of Contents

Page

Acknowledgements iii

List of Figures viii

A bstract . x

IL Introduction 1

1.1 The Utility Problem 3

1.2 New Ideas 4

1.3 Dissertation Organization 8

IL Background 10

2.1 Introduction 10

2.2 Planning Terms and Models 11

2.2.1 Representing Domain Objects and Operators 11

2.2.2 Definitions 11

2.2.3 Search Space: States or Plans 15

2.2.4 A Plan-space Planning Model 19

2.3 Learning, Reuse, and the Utility problem 23

2.3.1 Explanation-based Learning (EBL) 23

2.3.2 The Utility Problem 24

2.4 Related Research 27

2.4.1 MORRIS: Selective Macro Learning 28

2.4.2 CHEF: Heuristic Case-based Planning 30

2.4.3 SNLP+EBL: A Plan-space Macro Planner 32

2.4.4 PRODIGY/ANALOGY: A State-space Case-based Planner 33

2.5 Summary 35

iv

Page

Il HINGE . 37

3.1 Introduction 37

3.2 HINGE's planning model 37

3.2.1 A Data Structure for HINGE's planning model 38

3.2.2 Defining Abstract Operators to Record Goals and Insert

Domain Knowledge 39

3.2.3 Using Abstract Operators in Establishments 40

3.2.4 Definitions Required by Abstract Operators 41

3.2.5 The Non-deterministic Algorithm of HINGE's planning

model 42

3.3 HINGE Overview 43

3.4 Search Control 45

3.4.1 Selection of an Abstract Operator to Reduce 46

3.4.2 Generation of Reductions 46

3.4.3 Ordering Reductions: Means-everything Analysis . . . 50

3.5 Planning in HINGE 52

3.6 Hierarchical Reuse and Efficiency 57

3.7 Decomposition Methods 58

3.7.1 Independence-based Decomposition 60

3.7.2 Phantom-goal Decomposition 61

3.7.3 Library-based Decomposition 62

3.8 Learning 63

3.8.1 Learning Mechanism 63

3.8.2 Learning Filters 67

3.9 Reuse allowed in HINGE 68

3.10 Summary 69

v

Page

IV. Addressing the Utility Problem 71

4.1 Introduction 71

4.2 Analyzing the Utility Problem 71

4.2.1 Separate Costs 71

4.2.2 Previous Methods for Containing Costs 72

4.3 Selective Reuse 73

4.3.1 "Impedance Mismatch" in an Index 75

4.4 Retrieval: An Extended Example 76

4.4.1 Solving the Utility Problem in a Blocks World 77

4.4.2 Expanding the Blocks World 80

4.4.3 Polynomial-Time Retrieval 82

4.5 Analyzing Selective Reuse 83

4.6 Solving Problems Incrementally with Relaxed Selective Reuse 84

4.7 The Impact of Efficient Retrieval and Selective Reuse on the Utility

Problem 85

4.8 Summary 86

V. Empirical Results 87

5.1 Introduction 87

5.2 The Domain and Method Used 87

5.3 The Effect of Large Libraries 88

5.4 Selective Reuse vs. Macros with Abstract Establishers 91

5.5 Learning from Random Problems 92

V. Conclusions and Recommendations 94

6.1 Conclusions 94

6.2 Specific Contributions 94

6.3 Recommended Future Work 96

vi

Page

References . 99

V it . 104

vii

List of Figures

Figure Page

1. A simple planning system that searches using provided operators 2

2. A planning system with a learning element. 2

3. Expansion of a search space caused by considering one additional choice per

decision .. 3

4. A state space with multiple possible paths 16

5. The definitions of operators of the state space shown in Figure 4 16

6. Allowed refinements of an operator sequence for operators a, b, and c . 18

7. A block-stacking planning problem called "Sussman's Anomaly." 20

8. The state space associated with Sussman's Anomaly 20

9. A block-stacking problem with a solution 25

10. Operator definitions corresponding to the block-stacking problem solution in

Figure 9 ... 25

11. The generalized Sussman's Anomaly and a generalized solution 25

12. A generalized plan for Figure 11 operationalized by representation as an oper-

ator schema. 26

13. An example of the graphical notation used to denote a validated, hierarchical

plan (VHPLAN) of HINGE's planning model 39

14. The three types of reductions allowed in HINGE 47

15. The primitive operator schemas for the block-stacking domain 53

16. The initial VHPLAN for HINGE solving Sussman's Anomaly 53

17. The VHPLAN after a complete decomposition of the root operator 53

18. The VHPLAN after reducing abop 1 55

19. The VHPLAN after reducing abop 2 55

20. The VHPLAN representing a concrete plan resulting from reducing abop 3. 55

21. A block-stacking problem. 59

viii

Figure Page

22. Macros that could be used to solve part of the block-stacking problem in

Figure 21 59

23. A HINGE VHPLAN representing sets of goals to be solved simultaneously for

the block-stacking problem 59

24. A problem for a partial-order planner. 66

25. The resulting partially ordered plan 66

26. The resulting generalized plan 66

27. A problem for which the generalized plan seems appropriate but fails when A

is put on B first. 66

28. The retrieval process for a macro planner 77

29. Allowed block-stacking configurations and initial state variable labeling con-

vention 79

30. Alternative variable labeling for block-stacking transitions 80

31. An index for the macro operator schemas 80

32. Comparative planning times with reuse at four library sizes 90

33. Average planning times with reuse at thirty library sizes 90

34. Performance as a function of the allowed number of new operator preconditions

which cannot be established by existing plan operators 92

35. Performance improvement with reuse and different amounts of learning op-

portunities 93

ix

AFrr/DS/ENG/94J-01

Abstract

This research presents a new approach to improving the performance of a macro planner:

selective reuse. In macro planning, reuse can result in poorer performance than when planning

with only primitive operators, a phenomenon that has been called the utility problem. The

utility problem arises because the benefits of reuse are outweighed by the cost of retrieving a

macro to reuse and the cost of searching through the larger search space caused by considering

reuse candidates. Selective reuse contains the expansion of the search space by limiting the

number of reuse candidates considered and limits the search required by considering only

those reuse candidates that entail no additional work. Previously, performance improvement

in a macro planner has been possible only by selective learning. Unlike selective learning,

selective reuse never overlooks a learning opportunity that might have value in future problem

solving. This research developed a polynomial-order retrieval method which reduces the

cost of retrieving a reuse candidate likely to save search. The retrieval method requires time

that varies, at worst, linearly with the increasing size of the library of macros. A macro

planner (HINGE) was implemented to explore selective reuse. Because the HINGE planning

model can insert operators anywhere in a plan and does not introduce arbitrary ordering

constraints, HINGE can solve more problems efficiently through reuse than classical macro

planning models. To enhance the probability of beneficial reuse, decreasingly-powerful reuse

candidates are iteratively sought using a unique, hierarchically-structured search method which

is supported by several problem decomposition techniques and by the planning model used.

Performance results with HINGE are consistent with the idea that selective reuse can contain

the utility problem without the need for selective learning.

x

SEARCHING FOR PLANS USING

A HIERARCHY OF LEARNED MACROS

AND SELECTIVE REUSE

1. Introduction

A plan is a set of actions taken in some order to achieve desired goals, and planning is

the process of finding a plan. Planning is thought before action, decision before execution.

Planning is a fundamental, essential activity of all intelligent entities because without it goals

may not be achievable or resources may be wasted. As intelligent entities, humans are able

to plan quite well, although humans often make mistakes, especially as the complexity of the

plan increases.

Under certain conditions, it is possible to write a computer program that plans without

making mistakes. Figure 1 shows a block diagram of a basic planning system. The inputs to

the planning system define a planning problem and consist of the initial state, the desired goals,

and a set of operators for changing state by virtue of the actions they represent. A planning

system works by searching for an operator sequence which transforms the initial state into a

state in which the problem goals are true. This operator sequence constitutes a plan.1

It is desirable for a planning system to always find a plan whenever one exists. To

guarantee this property, however, exhaustive search is normally required because chosen

search directions may prove to be fruitless. Because exhaustive search algorithms require

time that is an exponential function of the length of the path searched, planning systems are

often slow when a long plan is required.

1An operator sequence is not necessarily required. Chapter H describes a model of planning that allows a
plan to consist of a set of opeatoms and a set of ordering constraints between operators.

Initial State -- Pl

Problem Goals - Planner

Operators ->

Figure 1. A simple planning system that searches using provided operators.

One method of making planning systems plan faster: is to use more powerful operators,

ones that achieve more goals. Plans made using these operators are shorter (and thus can

be found more quickly) because fewer operators are required to achieve the same number

of goals. Using powerful operators to speed planning is an appealing approach because it

is possible to learn more powerful operators from plans derived during problem solving.

Operators learned from plans are called macro operators (or macros); they are defined by the

interface characteristics of the plan they represent and they are annotated with the plan so that

they can be interpreted by the user of a planning system.

Figure 2 is a block diagram for a planning system that learns macros and reuses them to

improve its planning speed. In Figure 2, the original operators supplied as part of the planning

problem are called "primitive operators" to distinguish them from the learned macro opera-

tors. Planning systems that reuse the plans that macro operators represent are called "macro

planners" and the macros considered by the planning system are called "reuse candidates."

21n this riseanh, pfa refS t the speed wh which . plaming system can find a plan. Mthed
the qucalty of the plan produced.

h~liaI SlatProblm Goals• Plannr Pla

Figure 2. A planning system with a learning element.

2

Two operaors applica Three operators applica at each choice point
at each choice point

Figure 3. Expansion of a search space caused by considering one additional choice per
decision.

In contrast, simple planners like the one shown in Figure 1 are called "generative planners"

because they generate a solution using only the primitive operators supplied.

1.1 The Utility Problem

An empirical observation from using macro planning systems such as the one shown in

Figure 2 is that for some problems, performance is worse than if a simpler planning system like

the one shown Figure 1 had been used. This phenomenon has been termed the utility problem

and there are three factors that cause it First, there is overhead associated with retrieving a

good operator from the library. Second, when the planning system considers macro operators

in addition to the primitive operators, the larger number the choices available expands the

search space, which thus requires more time to search exhaustively. For example, Figure 3

shows that the additional consideration of 1 operator at each decision point in search increases

the size of the search space and the number of possible paths in it dramatically. Third, inserting

a macro operator into a plan can impact the amount of future planning necessary more than

inserting a primitive operator. A macro operator represents a large step in the search space;

if it is a step in the wrong direction, then the planning system has a large amount of future

work to do to get back onto a path leading to a goal state. These three factors are costs or

potential costs incurred when a planning system reuses learned plans (represented as macro

operators). Performance improvement results only if the benefit of using the more powerful

macro operators outweighs the costs associated with the utility problem as identified above.

3

Previous research has addressed the utility problem by limiting the overhead of retrieving

a good macro operator or by strictly limiting the expansion of the search space caused by the

larger number of operators available for consideration. To limit the overhead of retrieving a

good macro operator, one approach is to limit the size of the library by limiting the number of

plans that are learned 3 For example, Minton writes:

"Searching through the space of stored plans to find one that is best-suited to the
current problem may be as expensive as searching through the original search
space. This leads to the following paradox: as the system gains experience it
gradually becomes swamped by the knowledge it has acquired. In some cases,
performance can eventually degrade so dramatically that the system operates
even more poorly than a non-learning system. ... To avoid being swamped by
too many macro-operators, a problem-solver can endeavor to retain only those
macro-operators that are most useful." (Minton, 1985:651)

An important drawback of selective learning is some plan that would be useful on a future

problem may not be learned. To limit the expansion of the searc., space, some planning

systems consider only one macro operator for insertion into the plan it is developing. Such

planning systems, called case-based planners, retrieve a macro operator which represents a

plan that solved a similar problem and modify the operator in some way to make it solve the

current problem. An important disadvantage of reusing only one plan is that the planning

system can only solve problems that are similar to problems it has previously encountered.

1.2 New Ideas

This research focuses on new techniques for limiting the impact of the utility problem.

The utility problem arises not from costs alone, but because costs outweigh the benefits of

plan reuse. Therefore, I have treated the utility problem holistically by combining methods

that encourage successful reuse with methods for limiting the costs associated with reuse. In

particular, I have designed a planning model that explicitly represents features of desirable

reuse candidates and improves the flexibility of inserting a macro operator into a developing

3 Limiting the number of macro operators available also indimty limits the expansion of the seatch space
because fewer alternatives exist at choic- points in the space seaudied, but this is not the primaiy motivation for
stlektive tarming.

4

plan. Most previous plan-reusing planning systems have been based on a planning model that

limits the insertion of a macro operators and thus precludes reuse in some instances. Also, to

encourage successful reuse, I have developed a unique search control strategy that provides

multiple opportunities for reuse through problem decomposition. Decomposition controls the

search for a reuse candidate and results in generative planning like that implied by Figure 1

when no acceptable reuse candidate is found.

To control the costs associated with the utility problem, I use an efficient, info 1-

rich retrieval method which limits the retrieval overhead without the need for selective le,, atg.

To limit the search space expansion and search itself, my approach requires that only one reuse

candidate can be considered to solve a problem or sub-problem and that reuse candidate must

be on a solution path and must entail no future work. I call this method selective reuse, and it is

supported by the ability of my retrieval method to find very specific reuse candidates. Previous

approaches have encouraged retrieval of a reuse candidate that is likely to be on a solution

path or likely to entail no future work. A logical extension of these approaches, selective reuse

contains the utility problem better than other methods.4 Selective reuse depends on having

complete information about a problem. When a problem is specified incompletely, selective

reuse must be relaxed to allow reuse. The relaxed form of selective reuse considers only a

few reuse candidates that are likely to entail no future work. Although the relaxed form of

selective reuse is more susceptible to the utility problem than strict selective reuse, it contains

the utility problem better than any other reuse policy, given the amount of information known

about the problem.

To explore approaches to containing the utility problem, I designed and implemented a

planning system, HINGE, based on the planning model, search control, retrieval method, and

policy of selective reuse I developed. (Chapter II, IV). By virtue of these attributes, HINGE

controls the utility problem extremely well.

The specific contributions made by this research are:

4 Selective reuse often results in less reuse and thus, sometimes. worse overall perfonnance ha otber methods,
but the aim of this resewh is to find techniques of reducing the utility problem

5

1. A model of planning and reuse that explicitly represents features of desirable macro

operators and supports more flexible insertion of macro operators into the developing

plan. I have developed a planning model which represents distinguished subsets of

the outstanding goals as abstract operators in a plan. These subsets of goals are

used as an index for finding macro operators which, when retrieved, may be inserted

anywhere in the developing plan. In contrast with other planning models, these features

potentially improve search control and allow reuse that would otherwise be precluded.

(Sections 2.4, 3.2, 3.9).

2. A unique hierarchically-structured search control mechanism which encourages sub-

problem learning and improves opportunities for reuse while ensuring that a plan will

be found when one exists. Unlike other planning systems, HINGE structures its goal-

satisfaction search hierarchically in terms of the number of goals; this structure promotes

both learning and reuse of generalized plans or sub-plans. During planning, HINGE's

hierarchically-structured search control prefers operators that solve larger portions of

the problem before other operators. HINGE can also decompose a set of goals that can-

not be solved simultaneously. HINGE does not differentiate between macro operators

learned from previous planning episodes and the primitive operators that are supplied

as part of the planning problem description. The effect of these choices during plan-

ning is to facilitate opportunistic reuse of whole-problem solutions, flexible insertion of

subproblem solutions when no generalized plan solves the whole problem, and graceful

degradation to planning using only primitive operators when reuse is not possible. If

reuse fails, HINGE solves the problem using only primitive operators and a complete

search strategy; HINGE always finds a solution to a planning problem if a solution

exists. When learning, all sub-parts of the hierarchical search tree corresponding to

sub-problems that can benefit from reuse are learned by HINGE's learning component.

(Sections 3.4, 3.6).

3. A polynomial-order methodfor retrieving appropriate (or probably-appropriate) macros

from a library. An important result of this research is identification of a polynomial

6

method for retrieving macros that are guaranteed to be on a path to a solution and to

entail no future planning work. To find such macros, the retrieval method requires com-

plete information which generally exists only at the beginning of a planning problem.

However, even if the problem must be decomposed, information often exists to find

macros that are at least likely, if not guaranteed, to be on a path to a solution. A related

result is that this same retrieval method requires, in the worst case, only linear-order

time in the size of the library and is not a fimction of the size of the macros in the library.

(Section 4.4.3).

4. A policy of selective reuse which limits the number of macros considered and considers

only those macros that are on a solution path and entail no future work. This specific

search control policy is designed to improve reuse performance by strictly limiting both

the size of the search space and the search required in it. Limiting the number of reuse

candidates considered limits the expansion of the search space caused by considering

any operators in addition to primitive operators. If macros retrieved are guaranteed

to be on a solution path, then it is not necessary to consider more than one of them.

Moreover, if macros are on a solution path, then no backtracking is required, and

if macros do not require the planner to do any future work on their behalf, then no

search is required to make sure they are applicable. In contrast, if a macro requires

the planner to achieve additional goals, then the amount of additional search (planning

work) required in the future is unknown and unconstrained. Without some external

source of knowledge, the impact of inserting a macro into a plan can only be quantified

when no additional work is required (and then the quantity is zero). Selective reuse

is therefore the only domain-independent method of limiting the future work entailed

by inserting a macro operator. For domain-independent planning, any other reuse

policy re-introduces the utility problem by expanding the search space and requiring

additional search. Selective reuse depends on having a complete specification of the

planning problem. If the planning problem is not completely specified, as it is not when

solving a sub-problem as if it were independent of other parts of the problem, then a

7

relaxed form of selective reuse often gives good results in HINGE. The relaxed form of

selective reuse considers only those macros that are likely to be on a solution path and

likely to entail no future work by the planner. Both forms of selective reuse contain the

utility problem better than alternative policies. (Sections 4.3, 4.5).

HINGE is the first macro planner that contains the utility problem by selective reuse,

rather than selective learning. Furthermore, HINGE is the first planner that is specifically

designed to increase the opportunities for reuse through hierarchical problem decomposition.

Finally, HINGE's retrieval method lowers the cost of reuse, while its planning model facilitates

search control and increases the probability of effective reuse.

1.3 Dissertation Organization

This dissertation is organized into six main chapters. The following chapter presents

background material that serves as a foundation for this research. The general topics of

planning, macro learning, reuse, and the utility problem are described. To show the relationship

of this research with other work, four other planning systems are outlined and compared to

HINGE in terms of the types of problems solved, the flexibility of reuse, and management of

costs associated with the utility problem. Chapter MI describes the HINGE planner and the

features of its model that promote reuse. HINGE's hierarchically-structured search method

is described as providing multiple opportunities for reuse, trying the best candidates first

HINGE's ability to flexibly reuse solutions is reiterated and shown to stem from its plan-space

planning model. Chapter IV analyzes the utility problem and defines two methods to combat

it a polynomial retrieval method and the policy of selective reuse for macros. An example

is presented to support the claim that, under restrictive conditions, it is possible to build a

polynomial-order macro retrieval procedure that retrieves only macros that are guaranteed

to be on a solution path. Chapter IV also shows, by example, how a non-selective policy

on insertion of reuse candidates expands the search space and requires additional search,

characteristic symptoms of the utility problem. Chapter V describes empirical results which

are consistent with claims made about the developed retrieval method and selective reuse. The

8

final chapter of the document provides conclusions, reviews specific research contributions,

and suggests promising avenues for future work.

9

II. Background

2.1 Introduction

Automated planning systems can be applied to solve many real-world problems, but

their inefficiency prevents ther widespread use. One method of improving efficiency is to

avoid search by reusing previously derived plans as much as possible. This strategy does not

always work, however: an observation which defines the utility problem. To avoid the utility

problem, some mechanism must be employed to promote plan reuse while limiting search. To

encourage plan reuse, it is useful to identify and retrieve good reuse candidates, to be flexible

when inserting a selected candidate, and to provide additional opportunities for reuse if initial

efforts fail. This research improves upon previous efforts in these areas. To limit search

without outside information to guide search, the number of reuse candidates considered must

be limited somehow. Previous methods for limiting search have included selective learning

of plans for macro planners and single-plan reuse with modification for case-based planners.

The restriction of reusing a single plan in case-based planning is an example of a more general

method for controlling the expansion of the search space: selective reuse. Chapters MI and IV

describe a macro planning system (HINGE) which also contains the search space expansion

by selective reuse. This chapter presents the the background information that facilitates

discussions in Chapter HI and IV.

As an overview, this chapter begins by defining terms required to describe HINGE as

well as other planners and then uses these terms to discuss state- and plan-space search and

related issues. Section 2.2.4 describes a non-deterministic, plan-space-searching planning

model which HINGE's planning model extends. Three formal properties that characterize

HINGE and some other planners are defined. Section 2.3 describes learning, reuse, and the

utility problem. Finally Section 2.4 presents four other planners that reuse previous solutions

and compares HINGE with them in terms of their management of the utility problem.

10

2.2 Planning Terms and Models

In Chapter I, planning systems were characterized as algorithms that search for a

sequence of operators that transform a given initial state into a state in which problem goals

are true. This section formalizes that description and extends it to eliminate unnecessary

ordering constraints on operators.

22.1 Representing Domain Objects and Operators. Many problems encountered

daily in business, industry, and the military can be cast as planning problems and solved using

planning systems. To do so, the problem must first be mapped into a formal representation

assumed by the planning system and the output from the planning system must be interpreted

in terms that make sense to the user. In this research, it is assumed that domain objects and

operators are represented by propositions. Although alternative representations exist, object

attributes, relationships between objects, and changes in state can most easily be represented

by propositions. The syntax and semantics of propositions can be found in (Gries, 1985).

Operators are identified with names. It is assumed that there is an mapping between

names of operators and actions so that the output of a planning system may be interpreted by

the user.

2.2.2 Definitions. To specify a planning problem, definitions are required for the

fundamental concepts of state and problem goal and for the meaning of change caused by

action.

Definition: State A state is a unique set of non-negated propositions that
describes all objects of interest in a domain in terms of pertinent relationships
between objects and attribute values for each object.

Definition: Problem Goal In the context of a planning problem, a problem
goal is a proposition that indicates a desired value for a particular relationship
between objects or an attribute value for an object.

11

Because states are described by unique sets of propositions, each state is distinguishable from

all other states. A set of problem goals may be included in multiple states; any state that

includes all the problem goals is referred to as a "goa state."

An operator is a data structure used by the planner that has the interpretation of an

action. An operator captures the important attributes of action: the changes in state caused

by the action (effects) and the propositions that must be true before the action is feasible

(preconditions). Applying an operator has the same implications as performing an action.

Definition: Operator An operator consists of an operator name, a set of
preconditions, and a set of effects. Each precondition and effect is a proposition
which may be negated or non-negated.

Definition: Applying an Operator An operator may be applied in any state
which includes all of its preconditions. When applied in a StateJ, an operator
causes a transition to a new state, State_2, which is found by deleting all negated
operator effects from State- and adding all non-negated operator effects. More
generally, an operator may be applied whenever its preconditions can be shown
to hold.

To save storage space, practical planning systems take operator schemas, rather than

operators, as inputs. An operator schema includes variables in its name and as operands in

its preconditions or effects. For example, consider an operator which includes the proposition

SOME-RELATIONSHIP(A, B, C) in either its preconditions or effects. Rather than require

n3 operators that are necessary to represent a domain of n objects such as A, B, and C,

a planning system that takes operator schemas as inputs requires just one operator schema

with a predicate of the form SOME-RELATIONSHIP(?-X, ?-Y, ?-Z), where ?-X, ?-Y, and ?-Z

are variables. Such a planning system finds operators by instantiating all variables in useful

operator schemas, unifying predicates in each operator schema with propositions in a state or a

set of goals. To guide the unification process, an operator schema must also specify constraints

on the values of variables. These constraints are used to keep different variables from unifying

with the same constant (variable separation) or to represent domain theory required to define

the operator schema.

12

Definition: Operator Schema An operator schema consists of an operator
name which possibly contains variables; a set of preconditions, each of which
is a negated or non-negated predicate; a set of effects, each of which is either
a negated or non-negated predicate; and a set of constraints on the values for
variables. An operator schema must contain at least one variable as an operand
to a precondition or effect.

A plan is often thought of as a sequence of operators, but a total ordering on all operators

is not always required.

Definition: Plan A plan is a set of operators and a set of ordering constraints
between operators, where an ordering constraint is denoted by 01 -< 02,
meaning that the operator 01 necessarily precedes the operator 02 in the plan.

Note that the definition above does not require a plan to be able to solve a problem or even to

be executable from an initial state; instead, a plan is the current product of a planning system.

If a planning algorithm searches in a space of states, then it is easy to determine

if an operator can be applied by examining the current state. However, as discussed in

Section 2.2.3, searching in a space of states with a simple search strategy is inherently less

flexible than searching in a space of plans. When searching in a space of plans, some data

structure is required to ensure that operators can be applied. For planners that search in a

space of plans, two important concepts useful in this regard are establishment and clobberer.

An establishment is a data structure used show that preconditions hold. A clobberer is an

operator tat "threatens" or possibly invalidates an establishment.

Definition: Establishment With respect to a particular plan, an establishment
is a triple < E, p, C > where p is a proposition, E is an operator that includes
p in its effects, C is an operator that includes p in its preconditions, and the set of
ordering constraints in the plan includes E --< C.

Definition: Clobberer With respect to a particular plan and an establishment
< E, p, C >, a clobberer is an operator Clob whose effects include the negation
of p and neither Clob -.< E nor C -< Clob are in the ordering constraints of
the plan.

If an establishment < E, p, C > exists, then the operator E is called an establisher, while the

operator C is referred to as the consumer. E is said to establish p. Finding an establishment for

13

a particular precondition is called establishing the precondition. Furthermore, if a clobberer

Clob exists with respect to a plan and an establishment < E, p, C >, then Clob is said to

clobber the establishment.

Chapman's modal truth criterion defines a method for determining if a given proposition

is true in a given state or in the context of a particular plan (Chapman, 1987:340). The

definitions below captures the essence of the modal truth criterion and are useful for searching

in a space of plans.

Definition: Operator Applicability An operator is applicable in a plan if all
of its preconditions are true in the state in which the operator is applied. For
searching in a state of plans, an operator C is applicable if every precondition of
C has an establishment and there is no clobberer of the establishment in the plan.

Definition: Plan Applicability A plan is applicable if every operator in the
plan is applicable.

The input to a planning system is a planning problem which includes an initial state,

a set of problem goals, and a set of primitive operators or primitive operator schemas. For

searching in a space of plans, it is convenient to represent the initial state and set of problem

goals as an initial plan. A plan that solves a planning problem is called a solution and can be

defined in terms of applicability and the initial plan.

Definition: Planning Problem A planning problem is a 3-tuple < I, G, 0 >,
where I is a set of propositions that are all true initially, G is a set of propositions
that must be true in the final state, and 0 is a set of operators or operator schemas.
I is called the initial state. Elements of G are called problem goals. Elements
of 0 are called primitive operators or primitive operator schemas to distinguish
them from macro operators or macro operator schemas that are learned from plans
during the course of problem solving.

Definition: Initial Plan An initial plan of a particular planning problem is
a plan that consists of two operators, init and final, and an ordering constraint
init -< final; init has no preconditions, and its effects are equal to I, whilefinal
has preconditions equal to G and has no effects. All other operators in the plan
are constrained to come after init and before final.

14

Definition: Solution A plan is a solution of a particular planning problem if it

is applicable and includes the initial plan of the planning problem.

For a given set of operators, there is a one-to-one correspondence between a planning problem

and its initial plan. A solution always includes init and final; these operators should be

eliminated when the solution is interpreted.

Once derived, a solution can be converted into a macro operator as described in Sec-

tions 2.3.1 and 3.8.1.

Definition: Macro operator A macro operator (or macro) is an operator that
represents a solution to a planning problem and is annotated with the solution so
that the macro operator may be interpreted by the user of a planning system.

In HINGE and most other practical planning systems, learned plans are stored as macro

operator schemas both to save space and to make learned plans useful for solving many more

problems. In the context of planning with reuse, the macro operator schemas (or macros that

arise from them) under consideration by the planner are called reuse candidates and represent

generalized solutions (or solutions) to previously learned planning problems.

2.23 Search Space: States or Plans. Planning with simple search strategies in

a state-space has important implications regarding ordering constraints between operators

and how operators are inserted into plans. Using a simple search method like depth-first

search, every operator in the current plan has an ordering constraint with respect to every

other operator, and operators in the plan are said to be totally-ordered. Some of these ordering

constraints are required to establish preconditions or eliminate clobberers, but other ordering

constraints are imposed by the search process itself. For example, consider the state space

shown in Figure 4 and operators defined by Figure 5. Neither operator has any preconditions.

Suppose the initial state is S1 (the empty set) and the problem goals are A and B so that S4 is a

goal state. There are two different paths from S I to S4. However, only one path will be found

if depth-first search or another simple search strategy is used. The path found will depend

on the planner's choice for the first goal to achieve, but either path leads to a plan in which

operators are totally-ordered. Either plan includes an unnecessary ordering constraint between

15

S• || | | | ! !

achlsfi ý eýve B

acive A achievB

S2: (A) S3: (B)

achieve % B /achieve A

84: (A,BJ

Figure 4. A state space with multiple possible paths.

Operator Definitions

name: achieve B achieve A
preconditions:

effects B A

Figure 5. The definitions of operators of the state space shown in Figure 4.

operators. Adding this unnecessary ordering constraint is a form of over-commitment by the

planning system.

Importantly, searching in a state-space does not imply a total-order on operators for every

search strategy; it is the combination of search strategy and search space which determines this

property. For example, a more sophisticated search method could be devised for finding both

paths shown in Figure 4 and recognizing that no ordering constraint is required in the plan.

Generally, such a strategy requires look-ahead and some analysis. For simple search strategies

that lack these characteristics, the choice of a state-space implies totally-ordered operators.

I call state-space-searching planning systems that use simple search strategies "state-space

planners."

An alternative to searching in a state-space for a state that includes problem goals

is to search in a space of plans until a solution is found. In a space of plans, the nodes are

16

plans (operators and ordering constraints on them) and for refinement planners', the transitions

between nodes are the result of adding an operator or adding an ordering constraint to establish

a precondition or eliminate a clobberer. I call such a planner a "plan-space planner2 ." Even

with simple search strategies, plan-space planners do not imply a total ordering on operators

and do not add arbitrary ordering constraints for the convenience of the search strategy.

It is commonly understood that committing to planning decisions is inappropriate

whenever delaying the decision leads to discovering information useful for making a bet-

ter decision; this strategy is called "least commitment." Many researchers in the planning

community believe that searching in a space of plans is more flexible and supports a strat-

egy of least commitment better than searching in a space of states (Kambhampati, 1992,

McAllester and Rosenblitt, 1991, Tate, 1977, Wilkins, 1988).

2.23.1 Implications for Inserting Operators and Reuse. The total ordering

of operators characteristic of state-space planning models requires that new operators can only

be added at one end or the other of the sequence of operators in the current plan. If the planner

searches forward from the initial state, then operators are added to the end of the current plan;

it is also possible to find one or more goals states and search backward to the initial state.

Because transitions in a plan-space only involve adding operators and or-

dering constraints, new operators may be inserted anywhere in the current plan

(Kambhampati and Chen, 1993:515). For example, Figure 6 shows paths to different op-

1Refinement planners only add opezvors or ordering constraints, but in general, transitions in a plan-space
could also result frmn deletion of operators or ordering constraints. In this document, plan-space planners are
assumed to be refinement planners.

2 ph1.mn models which search in a space of plans are often called "partial-order" planning model because
they do not require a total-ordering on operators in a plan. The name "partial-order" distinguishes such models
from other models which insert arbtrary ordering constraints purely as a convenience for the planning model.
However. Frank Maddiam Brown points out that "partial-order" is a establishae term in logic with a meaning
i s with its usage in the planning literature (Brown, 1990). In logic, a partial-order is a reflecive,
antisymmetric, transitive relation; in contrast, the relation of ordering constraints on operators in a plan is
inaexive, antisymmeric. and transitive (a quasi-order, in logic parlance). The "partial" part of the planning
team refers to the fact that the relation of ordering constraints on operatos is a partial relation (every operator is
not necessarily ordered with respect to every other operator). To avoid confusion, I call planners that search in a
space o plans "plan-space planners."

17

a b

ca ab" ac ba bb bc ca cb cc

aaa aab ... ace

Figure 6. Allowed refinements of an operator sequence for operators a, b, and c
(Kambhampati and Chen, 1993:515).

erator sequences. All paths shown are possible refinements if a plan-space is searched, but

if a state-space is chosen instead, those paths that include dashed lines are not possible with

simple search strategies. For exploiting plan reuse, Kambhampati and Chen have recently

pointed out the potential usefulness of being able to insert operators at any point in the current

plan (as discussed in Section 2.4.3):

"...we argue that the real utility of using partial order [plan-space] planning ... is
that it provides a flexible and efficient ability to interleave the stored plans with
new operators, thereby significantly increasing the planner's atility to exploit
stored plans." (Kambhampati and Chen, 1993:515)

By allowing macro insertion anywhere in a plan, a plan-space planner allows reuse precluded

by state-space planners.

2.23.2 Implications for Nonlinear Problems. The choice of search space

can affect the algorithmic requirements for solving certain problems and the length of the

resulting solutions, but searching in either type of space can be effective for finding solutions,

even for nonlinear planning problems. Nonlinear problems are those which cannot be solved

by achieving problem goals sequentially, even when goals are considered in all possible

orders. Nonlinear problems are caused by goal interaction: a planning system achieves a

particular problem goal, but subsequently the goal is negated by an operator used to achieve

another problem goal As an example, the nonlinear block-stacking problem known as

18

S

Sussman's Anomaly is shown in Figure 7, and its state-space is shown in Figure 8. In

Sussman's Anomaly, achieving either of the problem goals first leads to a state in which

further progress depends on negating the achieved goal. For example, in Figure 8, if on(A, B)

is achieved first, state X results and on(A, B) must be negated to reach the goal state. To

find a solution to a nonlinear problem like Sussman's Anomaly, the planner must either

protect tht goals it achieves from being negated or re-achieve problem goals that have been

negated.3 While plan-space planners can use either of these methods with simple search

strategies, state-space planners cannot protect goals without some form of look-ahead search

and search-space analysis. For example, if a simple state-space planner achieves on(A, B)

by reaching state X in Figure 8, the planner could protect this goal by refusing to move

to a state that negates it, but doing so implies that the planner will not find the goal state.

The only option for such a state-space planner is to re-achieve goals that are negated. For

example, in Figure 8, if on(A, B) is achieved first, the most straightforward path goes from

the initial state to state X, then to state Z, and then to the goal state. The drawback with goal

re-achievement is that the resulting plan is longer than necessary. Of course, it is possible

to overcome this drawback by writing a program which analyzes the plan and shorte= it, or

by using a more sophisticated search strategy using look-ahead search with analysis to avoid

the drawback. These methods address the fundamental disadvantage of using simple search

methods in a state space: over-commintment to unnecessary ordering constraints between

operators. Rather than use a complicated planning algorithm to search in a space of states,

some planners including HINGE are based on a simple algorithm that searches in a space of

plans (Kambhampati, 1992, McAllester and Rosenblitt, 1991, Tate, 1977, Wilkins, 1988).

2.2.4 A Plan-space Planning Model. McAllester and Rosenblitt have defined a

planning model that searches in a space of plans and only adds operator ordering constraints

that are necessary for establishing preconditions or eliminating clobberers. The algorithm

for McAllester and Rosenblitt's planning model is non-deterministic because it leaves the

3Some early plannes such as STRIPS did not use either of these methods and could not solve nonlinear
poblems ("mkes and Nilsson, 197 1).

19

Initial state: {on(C. A). on(A. table), on(B. table),
deac), dear(B))

Problem goaiu. j{,(A. B). on(B. C)}

Figure 7. A block-stackiig planning problem called "Sussman's Anomaly."

A C
C B

Figure 8. The state space associated with Sussman's Anomaly.

20

goal satisfaction algorithm unspecified (McAllester and Rosenblitt, 1991). McAllester and

Rosenblitt's algorithm has served as the basis for several recent planners (Barrett et al., 1991,

Hanks and Weld, 1992), and HINGE is loosely based on this algorithm. A modified form of

the algorithm is given by the following procedure FIND-SOLUTION whose arguments are a

plan, a set of outstanding goals, and a set of establishments. FIND-SOLUTION is defined as:

1. If the current plan solves the planning problem, return the current plan.

2. Suppose C is an operator in the current plan, p is a precondition of C, and the set of

establishments includes < E, p, C >. If there is a clobberer Clob of < E, p, C >

in the current plan, then make a new plan by adding one of the following ordering

constraints. Recursively call FIND-SOLUTION with the new plan and the current set

of establishments.

(a) Clob -<- E

(b) C -< Clob

3. Now there must be some operator C in the plan that has some precondition p with

no associated establishment. If possible, do one of the following and recursively call

FIND-SOLUTION with the new plan and new establishments that result Otherwise,

backtrack.

(a) If the plan includes an existing operator El that includes p in its effects and

does not include C -< El in its ordering constraints, add the ordering constraint

El - C to the plan. Add the establishment < El, p, C > to the set of

establishments.

(b) Add to the plan a new operator E2 that includes p in its effects and the new

ordering constraint E2 -- C. Add the establishment < E2, p, C > to the set of

establishments.

The modified algorithm above differs from McAllester and Rosenblitt's original algo-

rithm in that the original algorithm uses a stricter definition of "clobberer" than the one

21

in this chapter (McAllester and Rosenblitt, 1991:636). This chapter defines "clobberer"

as Tate does (Tate, 1977). McAllester and Rosenblitt state their believe that the mod-

ified algorithm above works as well or better than their original algorithm in practice 4

(McAllester and Rosenblitt, 1991:638).

The algorithm above may be altered for planning systems that take operator schemas

as inputs , rather than operators. To accommodate operator schemas, two alterations involv-

ing unification are required. First, instead of adding a new operator in step 3(b), an operator

schema, instantiated so that it includes p, is added. Second, in a later call to FIND-SOLUTION,

some of the remaining variables in the operator schema may be instantiated either to establish

preconditions (in step 3(a) or 3(b)) or to eliminate clobberers in the plan (in step 2). Instantiat-

ing a variable in an operator schema is a planning decision, and, like other planning decisions,

it is left unspecified by the algorithm. (McAllester and Rosenblitt, 1991:638)

2.2.4.1 Complete Planning Systems. FIND-SOLUTIONisanon-deterministic

algorithm. To build a planning system based on FIND-SOLUTION, a search strategy must

be specified. If the search strategy is systematic and exhaustive, then the resulting planning

system will always return a solution whenever one exists, and the planning system is said to

be complete. Completeness is clearly a desirable characteristic from the standpoint of a user

of a planning system, but often the exhaustive search required to make planners complete

also makes them undesirably slow. Completeness has only recently become commonplace in

planning systems, and it is not a property of some planners that have been shown to perform

well in certain domains (Wilkins, 1988).

22.4.2 Plan Quality vs. Planning Speed. This research does not address the

quality of plans (solutions) produced by a planning system. Plans are characterized in many

ways including their feasibility, cost, flexibility, and relative demand for particular resources.

4XKmNlampsth dbacmeZ the i fface between te modified and unmodified algotithM in tUms
of a trade-off between seuarh-space neuadmncy and over-commitmt (Kambhampae, 1993). Kambhampati's
resubs am coinuds with McAIfest and Rosenbfitt's imtuitiom.

22

The search strategy chosen for a planning system greatly affects the plans returned. However,

this research does not address plan characteristics; instead, it focuses only on the speed of

returning a solution, particularly in light of the utility problem.

23 Learning, Reuse, and the Utility problem

Except under very restrictive and impractical conditions, planning systems require

an amount of time which varies exponentially with the number of operators in the plan

(Bylander, 1991, Bylander, 1992). Therefore, building a fast planning system depends on

finding a way to make short plans, even for complex problems. The most obvious method

of making shorter plans is to use more powerful operators which achieve more goals. The

easiest method of finding such operators is to learn them from planning experience, as macro

planners do.

2.3.1 Explanation-based Learning (EBL). Forming a macro operator schema from

a plan is a form of learning called explanation-based learning (EBL). There are many other

types of learning that are also considered to be EBL (Ellman, 1989). However, all methods

learn a generalized goal concept from a single training example using domain theory to guide

learning. The "explanation" is a justification that the training example describes the goal

concept Once the generalized concept is learned, the concept must be represented in such

a way as to be recognizable to the problem solver, a process called "operationalization."

(Dejong and Mooney, 1986)

As applied to a plan, EBL results in a macro operator schema that represents a general-

ized plan. The goal concept is a plan for achieving some goals given some initial state. The

training example is a specific problem together with its solution. The domain theory required

is knowledge about establishments, clobberers, and plan applicability, as well as knowledge

about domain objects and their generalization. Knowledge about establishments, clobberers,

and plan applicability forms a causal model for explaining how the plan achieves problem

23

goals and what propositions of the initial state are required for the plan to be applicable.

Knowledge about domain objects helps to determine how a plan should be generalized.

As an example, suppose an EBL system is to learn a plan for stacking blocks. Consider

the block-stacking training example shown in Figure 9 and the operator definitions shown in

Figure 10. Using this training example and domain knowledge, the EBL system can prove

that the plan achieves problem goals and can identify blocks A, B, and C as irrelevant parts of

the initial state. Knowledge of object properties allows the EBL system to avoid variablizing

the table. Using domain knowledge, the EBL system can generalize the training example

into a plan that solves the generalized Sussman's Anomaly as shown in Figure 11. Finally,

this generalized plan must be operationalized so that it can be recognized and reused by the

planner. The EBL system uses domain knowledge again to operationalize the generalized

plan, resulting in the macro operator schema shown in Figure 12.

23.2 The Utility Problem. The primary motivation for learning and reusing learned

plans acquired from explanation-based learning (EBL) is to enhance planning speed over that

of a generative planner. Ironically, reusing plans decreases planning speed in some cases, a

phenomenon called the utility problem. In Chapter I, the utility problem was introduced as

an empirical observation on planning systems that reuse plans. Actually, the utility problem

affects any system that reuses learned concepts.

Definiton: Utility Problem For systems that seek to enhance performance by
reusing learned concepts, the utility problem is the possibility that the system's
pe formance will degrade with additional learning. For macro planners, the utility
problem is the possibility that the planner will plan more slowly after learning
additional plans.5

Previously, the utility problem has been considered only in terms of costs, rather than

in terms of both costs and benefits. No one has developed a planning model and algorithm

designed to overcome the utility problem by increasing the likelihood of reuse without future

5A 8eutiuvac Pomuw learns no plans which is cetainly fewer than a macro planner. Thaefr, another
deaiptm of the utility problem is that a macro planner sometimes perfoms worse than a generative planner
which is basad an dhe same planning model

24

Problem goals: jon(D, E), on(E, F))
Solution: 1. unstack(F)

2. stack(EF)
3. stack(D,E)

Figure 9. A block-stacking problem with a solution.

unstlk(F) stAoK(E F) stack(D. E)

dea, ;F) on(E, tible) on(D. table)
on(F, 0) -. " o
on(F, tabe)
-on(F, D) on(E, F) ofl(D, E)
dear(D -onE able) ovn(. table)

-oler(I doaqE)

Figure 10. Operator definitions corresponding to the block-stacking problem solution in
Figure 9.

Problem Goals: (on(?X, 9Y), on(?Y, ?Z))
Solution: 1. unstack(?Z

2. sta&k(?Y, ?-
3. sa•?X,?:

Figure 11. The generalized Sussman's Anomaly and a generalized solution.

25

Summan Macro Op Schema

.?Z,

=on(.Zb~

ciear()X)
-dear{.()

Figure 12. A generalized plan for Figure 11 operationalized by representation as an operator
schema.

impact. Furthermore, previous research has focused on the cost of retrieving a good reuse

candidate, rather than on the implications of inserting it into a plan.

Retrieving a reuse candidate was previously thought to require search, and the speed

of retrieval has been thought to be a nonlinear function of the size of reuse candidates or the

number of them in a library despite any indexing method used:

"It is sometimes claimed that the utility problem will be "solved" by the develop-
ment of highly parallel hardware and/or powerful indexing schemes. This opinion
is based on the belief that either of these developments would make matching ex-
tremely inexpensive. If matching were inexpensive, this would largely eliminate
any question of EBL's utility, since EBL, in effect, converts a tree search problem
into a matching problem. However, this argument ignores two important points.
First, the descriptions learned using EBL are neither bounded in number nor size.
Secondly, the computational cost of matching grows rapidly with the number and
size of the learned descriptions. Thus, the matching process requires search also
(sometimes referred to as knowledge search)." (Minton, 1990:369).

Because retrieval has been thought to require general search, many researchers be-

lieve the utility problem can only be limited with selective learning (Greiner, 1989,

Markovitch and Scott, 1989, Minton, 1985, Minton, 1990). In selective learning, derived

concepts (plans) are evaluated using a heuristic function that predicts the value of the concept

in future problem solving. Conrepts without sufficient predicted future value are not learned.

26

Importantly, retrieval does not always require search. Furthermore, when search is

required, normally a specific method of search can be used; this specific method may be a

polynomial algorithm, rather than an exponential algorithm required for general search. The

computational requirements for retrieval depend on the amount of information available; if

complete information exists, then search is avoidable or if partial information exists, then

general search may be avoided. Recently, Veloso has addressed the utility problem using an

efficient retrieval method to find reuse candidates that are likely to save search in a case-based

planner (Veloso, 1992). Veloso's approach is discussed in Section 2.4.4.

While focusing on the costs of retrieval, past research has neglected other costs that

contribute to the utility problem. These other costs are associated with testing reuse candidates

to see if they make planning faster. Previously, no one has found a way to guarantee that

reusing a retrieved candidate will lead to a solution. Furthermore, there has been no attempt

to quantify the amount of work entailed by inserting a reuse candidate into a plan. Instead,

previous methods have been able to increase the probability that a reuse candidate will lead

to a solution and increase the likelihood that inserting a reuse candidate will cause little or no

planning work in the future. A useful definition that characterizes the "goodness" of a reuse

candidate is:

Definition: Appropriateness A reuse candidate is appropriate if the decision
to insert it into a plan leads to a problem solution and does not have to be retracted
before a solution is found.

2.4 Related Research

Approaches to limit the utility problem while planning with reuse have included

1. selective learning and unconstrained reuse of macro operators in a state-space planner;

2. reuse of one past plan with modification in a case-based planner;

3. unconstrained learning and reuse of macro operators in a plan-space planner; and

4. unconstrained learning and arbitrarily constrained reuse of plans in a state-space planner.

27

None of these methods promotes reuse while limiting the costs associated with the

utility problem as well as the methods used in HINGE. Selective learning can preclude reuse

that is possible if all plans are learned. Arbitrarily limiting the number of reuse candidates

considered, as the second and fourth methods above do, also precludes reuse in some cases

because a good reuse candidate may be known, but not be found. State-space planning implies

that reuse candidates cannot be inserted except at one end of the sequence of operators that

represent the current plan. Hence, a state-space planner precludes reuse that depends on

interleaving operators, a capability allowed by a plan-space planner.

In contrast to these methods, HINGE is a plan-space planner that uses unconstrained

learning and selective reuse. Selective reuse considers only appropriate reuse candidates;

because the candidates are appropriate, limiting the number of reuse candidates considered

never precludes reuse. When the available information is insufficient for selective reuse,

HINGE uses a relaxed form of selective reuse which also uses appropriateness as a foundation

for constraining the number of reuse candidates considered. Selective reuse is described in

Section 4.5. In contrast, the second and fourth methods above use weaker methods to identify

good reuse candidates.

2.4.1 MORRIS: Selective Macro Learning. In 1985, Minton studied reuse in

STRIPS, an early state-space macro planner that suffered greatly from the utility problem

(Fikes and Nilsson, 1971, Fikes et al., 1972). From his analysis, Minton decided that STRIPS

was performing poorly because it learned too many worthless plans. Minton felt that STRIPS

would produce plans faster if only it learned fewer plans, particularly those with more value

to future problem solving. To test his idea, Minton built a STRIPS-based planner called

MORRIS that learned only two types of macros: those that were most commonly used in the

experience of the planner and those that represented "non-obvious" solutions, implying that

they saved a large amount of search. Minton compared the performance of MORRIS with

that of a generative planner and a STRIPS-like planner that uses a non-selective EBL system.

His results showed the value of selective learning for reducing the effect of the utility problem

and improving reuse-related performance. (Minton, 1985)

28

The retrieval methods used in STRIPS and MORRIS search for macros linearly. Each

macro in the library is a potential reuse candidate that must be tested to see if it achieves

desired goals. In MORRIS, the utility problem is controlled because of two attributes of

selective learning:

1. limiting the number of macros learned keeps the library small and reduces the time

required to retrieve a good reuse candidate and

2. learning non-obvious solutions results in powerful macros which enhance the probability

that reuse will dramatically improve performance.

Selective learning also contains the expansion of the search space to some extent because the

smaller library that results means fewer reuse candidates are available to consider. However,

this effect is coincidental and is not the primary focus of selective learning. With its policy of

selective reuse, HINGE considers only a small fraction of the macros in the library and thus

limits the search-space expansion much better than MORRIS does. In contrast to selective

reuse, selective learning neglects the impact of inserting a particular macro into a plan and

thus does not limit the future work the planner will have to do.

The biggest disadvantage of selective learning is that some concept that would be useful

on a future problem may not be learned. It is difficult to accurately predict the needs of future

problems in some domains. MORRIS uses a heuristic metric to determine if a macro or rule

should be learned, but the heuristic may fail. In contrast to selective learning, selective reuse

does not attempt to predict future value of a plan; instead, it learns all plans and filters reuse

candidates when the future "arrives," along with problem information useful for the filtering

process. By learning indLcriminately, HINGE avoids the work of predicting future utility and

never fails to learn a concept that is useful on a future problem.

Like STRIPS, MORRIS is a state-space planner. As described in Section 2.2.3, a

state-space planner must add operators to one end of a sequence of operators that constitutes

the current plan, while a plan-space plann: can insert operators at any point in the plan.

Therefore, because of the order in which it achieves goals, MORRIS precludes reuse in some

29

cases that HINGE (a plan-space planner) does not Minton has applied selective learning to

another problem-solver, PRODiGY/EBL, with the same success (Minton, 1990). PRODIGY/EBL

selectively learns control rules that can describe a broad range of concepts and learns from

both successes and failures. Like MORRIS, PRODIGY/EBL is a state-space planner and is

inherently less flexible in allowing reuse than HINGE.

Primarily because they have no special mechanism to do so, neither MORRIS nor

PRODIGY/EBLcan solve nonlinear problems. NoLimit, an algorithm that extends the search al-

gorithm of PRODIGy/EBL, can solve nonlinear problems, but NoLimit is a state-space planner,

and thus precludes reuse allowed by HINGE (Kambhampati and Chen, 1993, Veloso, 1992).

HINGE is a plan-space planner and can solve nonlinear problems without any special mecha-
nisn.

2.42 CHEF: Heuristic Case-based Planning. Case-based reasoning is an ef-

fective method of improving performance through reuse that became popular during the

mid-1980s. In the context of case-based planning, a "case" is a plan or generalized plan

along with the problem it solves and a representation of the planning process used to

produce the solution. Many researchers have developed case-based reasoning systems

(Kolodner, 1983, Kolodner et al., 1985, Koton, 1988), and a wealth of research foundations

have been laid for memory-based problem solving by others (Carbonell, 1983, Schank, 1977).

There are differences between case-based systems, but Hammond's CHEF is representative

of many case-based planning systems.

In contrast to MORRIS, CHEF and other case-based reasoners do not regulate learning;

instead, they work by very selective reuse. When CHEF is assigned a new problem, features

of the problem and a heuristic retrieval procedure are used to retrieve the solution for a very

similar previous problem encountered. Once retrieved, the past problem is analyzed by a set

of heuristic critics to identify changes that are required to make the old solution fit the current

30

problem. After modifications are identified, a set of heuristic repair procedures is unleashed

to perform them.6 (Hammond, 1990)

It is interesting to note that the granularity of reuse candidates is also constrained in

case-based planning. If there is a library case that matches a large part of the current problem,

then it will be reused. Smaller cases that fit a smaller part of the problem (and thus could

save a smaller amount of search) are ignored, even when no larger case can be found. Thus,

case-based planners occasionally ignore a beneficial reuse opportunity.

The utility problem arises in CHEF in plan retrieval and during modification if the

required plan modifications are ultimately impossible, but during both retrieval and modifica-

tion, the effects can be minimized at the risk of precluding reuse. Learning a large number of

plans impacts retrieval, but with proper indexing, retrieval performance degrades sub-linearly

with the growth of the case library. Case-based planning is robust with respect to the reuse

candidate. It is not necessary to get the solution to the most similar previously-encountered

problem, although performance improvement varies with the modifications required; reusing

a solution to any similar past planning problem will often result in a performance improve-

ment Therefore, retrieval in case-based planners can be less specific and faster than if the

best candidate were required. As in STRIPS and MORRIS there is no guarantee that a reuse

candidate is appropriate. The choice to reuse a case may eventually have to be retracted

if the required plan modifications cannot be made; if so, then the time spent on case-based

planning is wasted. There is no limit on the amount of work needed to modify a retrieved

plan in case-based planning. However, by retrieving a plan that worked on a similar problem,

case-based planners increase the likelihood that the plan is appropriate for reuse and requires a

limited amount of modification. There are different strategies for handling failure in different

case-based planners. Often, after failure in the case-based component the problem is solved

6 Kambhampati's Priar planner uses an analytic causal model consisting of the set of precondition estab-
lishens to retrieve reuse candidates and identify changes to be made by a generative planner. Thus Priar
is a case-based planner that effectively eliminates dependence on heuristic procedures typically used in other
case-based planners. (Kambhampati and Hendler. 1992)

31

by a generative component; this strategy contains the utility problem better than re-applying

the case-based planner with an alternative case.

Typically, the case-based approach does not allow reuse of multiple cases. Thus, a

typical case-based planner is not useful for problems that would benefit from reusing two or

more solutions from past experience. For example, learning problems in CHEF's domain of

Szechwan cooking cannot help CHEF solve a problem that involves goals of making dinner

and keeping the kitchen clean, even when CHEF also learns plans for keeping kitchens clean.

Because there are many more problem combinations than there are problems, it is important

to be able to solve combination-type problems. Recently Veloso has developed a unique

case-based planner that allows reuse of multiple cases (Veloso, 1992). (See Section 2.4.4).

Unlike typical case-based planners, HINGE and other macro planners can reuse multiple

solutions from previously encountered problems. HINGE can insert multiple macros because

it decomposes any set of goals which cannot be achieved directly. Case-based planners have

not used decomposition, mainly because the largest benefit from reuse corresponds to reusing

the largest candidate. Case-based planners focus on the effort needed to modify a known

solution. In contrast, HINGE and other macro planners avoid modification entirely. Instead

they look for other opportunities for reuse on the remaining sub-problems. Even though these

sub-problems are smaller and the potential benefit from reuse is diminished, reuse is still likely

to be cheaper than generation.

2.43 SNLP+EBL: A Plan-space Macro Planner. At about the same

time that HINGE was developed, Kamibhampati and Chen assembled a plan-space

macro planner to study the usefulness of such a planner for EBL-based plan reuse

(Kambhampati and Chen, 1993). Kambhampati and Chen's macro planner was constructed

by adding an EBL system to the SNLP generative planner which implements McAllester and

Rosenblitt's planning model (Barrett et al., 1991). For the purposes of this discussion, this

planner will be called "SNLP+EBL."

32

Because they are both plan-space macro planners, SNLP+EBL and HINGE allow reuse

precluded by state-space planners and typical case-based planners. SNLP+EBL and HINGE

are unique among macro planners in their special ability, during planning, to expand macros

in a plan. To expand a macro, the macro is replaced by the plan it represents (and is annotated

with). Expanding two macros allows interleaving their primitive operators, allowing ordering

constraints and reuse that would not be possible without expanding macros. Because they are

plan-space planners, neither SNLP+EBL nor HINGE require any special mechanism to do the

interleaving (just as they do not require a special mechanism to solve nonlinear problems or

to be complete planners). Furthermore, HINGE and SNLP+EBL can make use of multiple

reuse candidates of any size to solve any planning problem, unlike case-based planners such

as CHEF.

Unlike HINGE, SNLP+EBL was not designed to contain the utility problem. HINGE

uses an efficientretrieval method based on hashing and specific indices. In contrast, SNLP+EBL

searches the library linearly to find reuse candidates that match the most goals.7 Retrieval

based on goal matching is not as selective as retrieval based on appropriateness for reasons

described in Section 4.2. Therefore, SNLP+EBL does not strongly constrain the amount of

future work entailed by insertion of a reuse candidate, as selective reuse in of HINGE does.

Finally, there is no restriction on the number of reuse candidates considered. For these reasons,

SNLP+EBL does not contain the utility problem nearly as well as HINGE does.

2.4.4 PRODIGY/ANALOGY: A State-space Case-based Planner. Recently, Veloso

has extended PRODIGY (a state-space planner) to reuse plans and control information found

when deriving the plans, thus combining elements of macro planning and case-based planning.

This planner, PRODIGY/ANALOGY, extends case-based planning by allowing multiple-case

reuse. PRODIGY/ANALOGY also uses an efficient retrieval method to find similar past plans.

Like other case-based planners, PRODIGY/ANALOGY addresses the utility problem by depend-

7 Kamfampad bas extensively researchid retrieval based an a stmg causal model which could be used
to impmove SNLP4EBL (Kambhampati, 1990). However. Kanmlbampati and Chen developed SNLP+EBL to
roMpare a plan-spaceplanner with other planners in terms of their ability to reuse plans. This purpose was well
served by the simple stmrae and retrieval strategy described in (Kambhampati and Chen, 1993:517).

33

ing on its efficient retrieval method and its similarity-based estimate of "goodness" for the

retrieval candidate (Veloso, 1992).

The hash-based retrieval method of PRODIGY/ANALOGY is similar to the one used

in HINGE. Unlike HINGE, PRODIGY/ANALOGY uses a discrimination net to avoid testing

preconditions common to two reuse candidate twice. HINGE's retrieval method is a bit less

efficient, but it was simpler to implement and is sufficient for the purposes of this research.

Both methods require polynomial time (O(n3)) and vary with the size of the initial state, the

average number of macro preconditions, and the number of macros hashed to the same set of

goals achieved (Veloso, 1992).

PRODIGY/ANALOGY uses its retrieval method to find macros that represent similar past

plans. Therefore, the reuse candidates PRODIGY/ANALOGY considers are not guaranteed to

work and do not imply any limitation on the work entailed by inserting them into a plan. In

contrast, using its policy of selective reuse, HINGE retrieves candidates guaranteed to be ap-

propriate for a problem or sub-problem. For reasons discussed in Section 4.2, appropriateness

also implies that no future work will be required by an inserted reuse candidate. Because of

selective reuse, HINGE contains the utility problem better than PRODIGY/ANALOGY.

To reuse plans, PRODIGY/ANALOGY searches in the library for a reuse candidate that

achieves as many goals as possible. If no reuse candidate can achieve all outstanding goals,

then the problem is effectively decomposed by finding a candidate which achieves some goals

and searching again for a candidate which achieves the remaining goals." This strategy works

well when the library contains reuse candidates which achieve all or nearly all goals. Other-

wise, the strategy must search through a much larger space to retrieve a reuse candidate because

there are relatively many unique subsets when a set of goals is divided approximately equally.

Thus, PRODIGY/ANALOGY has high retrieval costs for problems that must be decomposed into

sub-problems of roughly equal size. Because of this strategy, PRODIGY/ANALOGY'S can effi-

ciently solving only problems that are similar to previously solved problems, a limitation that

8An analogous decomposition method was developed fbe HINGE (see Section 3.7.3). but HINGE also uses

other methods.

34

'S

is characteristic of case-based planners. In contrast, with simple domain knowledge, HINGE

can efficiently decompose problems into same-size chunks, resulting in a much more directed

search for reuse candidates. Decomposition methods developed for HINGE are described in

Section 3.7.

Finally, PRODIGY/ANALOGY is a state-space planner. As previously argued, state-space

planners preclude reuse allowed by plan-space planners such as HINGE.

2S Summary

This chapter introduced plan-space planning and compared it with state-space planning

in terms of the reuse allowed. A modified version of McAllester and Rosenblitt's plan-

space planning algorithm was presented. Their algorithm results in a complete planner when

exhaustive search is used. To speed planning, more powerful operators must be learned

so that even complex problems can be solved using short plans. This chapter introduced

explanation-based learning (EBL) and discussed the utility problem that arises when reusing

EBL concepts. Importantly, the utility problem has been previously characterized in terms

of costs, and primarily in terms of the cost of retrieving a good reuse candidate. Many

researchers believe that selective learning is the only way to contain the utility problem,

although the utility problem can also be addressed by limiting reuse to one candidate, as

typical case-based planners do, or with efficient retrieval, as Veloso has done. Finally, four

related planning systems were described in terms of their ability to reuse plans and their

management of the utility problem.

The utility problem represents a fundamental limitation on planning systems that try to

improve efficiency by reusing previous solutions. However, selective learning is not the only

way to contain it Combating the utility problem requires an architecture designed to increase

the probability of reuse, while limiting the costs of retrieval and testing reuse candidates.

Chapter HI describes a planning system (HINGE) that promotes reuse with a flexible planning

model which represents desired features of reuse candidates and offers multiple opportunities

for reuse through search and decomposition. Chapter IV analyzes the costs of the utility

35

problem and derives a retrieval mechanism and a reuse policy that combine to reduce these

costs.

36

i11. HINGE

3.1 Introduction

Current methods for addressing the utility problem include selective learning (in macro

planning) and limiting the reuse to a single candidate and/or efficient retrieval (in case-based

planning). These methods try to solve the utility problem by limiting the cost of retrieval or

by limiting expansion of the search space. In contrast, I treat the utility problem both in terms

of costs and benefits from reuse. This chapter describes HINGE, a plan-space macro planner

implemented to explore this eclectic approach. The chapter describes HINGE in general.

but it focuses on HINGE's ability to promote search-saving reuse. Chapter IV describes two

methods designed to strictly limit costs that contribute to the utility problem.

This chapter describes HINGE in terms of its planning model and search control mech-

anism. As an overview, the chapter begins by defining HINGE's planning model and abstract

operators used in the model An overview of HINGE is presented in Section 3.3, followed by

a description of HINGE's basic search control mechanism and a simple example of planning

(Sections 3.4 and 3.5). HINGE's hierarchical search control is discussed and a set of decom-

position methods developed to support it are described in Sections 3.6 and 3.7. Section 3.8

presents a brief description of HINGE's EBL component. Finally, Section 3.9 reiterates the

flexibility of reuse that HINGE supports by virtue of its planning model.

32 HINGE's planning model

To promote search-saving reuse, HINGE is based on a planning model that searches in

a space of plans and explicitly represents goals that should be achieved by a reuse candidate.

HIN'3Eextmds McAllester and Rosenblitt's plan-space model by including abstract operators,

data structures for representing subsets of the outstanding goals. A subset of goals, in turn,

represents a particular decomposition of a problem and also describes goals a reuse candidate

must achieve. Thus, an abstract operator represents a sub-problem and can be used to

37

index a plan that solves the sub-problem. Abstract operators may also be used to establish

preconditions and insert partial domain knowledge, when it is available.

In addition, HINGE's planning model was designed to concisely represent plans and

the process of planning so that the planner's decisions can be explained. For representation,

HINGE uses a single data structure that holds the context of the planning process. This

data structure includes the set of establishments and operator ordering constraints from which

a strong causal model may be derived. The planning process is captured by a plan tree

that records the history of decision making and represents untried choices that are useful if

backtracking is required.

3 2.1 A Data Structure for HINGE's planning model. For simplicity, HINGE's

planning model uses only one data structure to represent outstanding goals, precondition

establishments, and the current plan. This data structure, called a validated, hierarchical

plan (VHPLAN, pronounced 'v-h-plan') also represents a plan tree that is used to make

decisions about search control and captures planning decisions which led to the current plan.'

This VHPLAN uses typed operators to differentiate actions and outstanding goals. Abstract

operators, defined in the next section, identify goals to achieve, while concrete operators

denote instantiated operator schemas inserted into the plan to achieve goals. Figure 13 shows

a graphical representation of a VHPLAN. In the notation, precondition establishments and

ordering constraints on operators are represented as directed links, parent/child relationships

between operators are shown using undirected links, and operators are represented as boxes

containing the operator name, preconditions, and effects. A distinguished operator labeled

root is the root of the plan tree. The initial plan operators, init and final, are concrete operators

which are not part of the plan tree. The leaves of the plan tree, along with init and final,

represent the current plan. The parts of the VHPLAN (including establishments) that refer

to leaves of the plan tree, init, or final define nodes in the space that HINGE searches. The

' Tere "validation" is another term for "weabh t" (Kambhampati and Headier, 1992:206).

38

VHPLAN is useful because it compactly represents a great deal of information pertinent to

Figur 13. an e(amPLeN of tHeNGra sphclnoatniong udodenoeavldtdheacia

plnlanninogH.E' lanigmoe

3.2.2 Defining Abstract Operators to Record Goals and Insert Domain Knowledge.

To record planning goals and provide an insertion point for domain knowledge, I developed

abstract operators and define them here. In order to systematically search its space, a planner

must somehow keep track of the set of outstanding goals to be achieved. HINGE's model uses

abstract operators for this purpose. Other operators are called concrete operators and denote
actions that achieve goals:

Definition: Abstract and Concrete Operators An abstract operator is a

operator whose preconditions and effects are not completely specified in the sense
that propositions are missing. If both preconditions and effects are completely
specified for a particular operator, the operator is called a concrete operator.

Abstract operators support the insertion of useful domain knowledge when it exists. Without

domain information, HINGE abstract operators never have preconditions and only have those

effects that represent planning goals. Operator effects that achieve desired goals are called

"primary effects" while those that do not are called "side effects." If partial (or total) domain

tknowledge exists, then preconditions and side effects in abstract operators support timely

39

specfie fo a artculr opratr, he pertoris clle a onceteopeato

Abstactopeatos sppot te inerton f uefu doainknowedg whn i exsts Wihou

insertion of the knowledge. For example, suppose a goal G exists, but available domain

information specifies that G cannot be achieved without first achieving at least PI and that

at least the side effect Si always accompanies G. The planner can use this information to
immediately try to achieve PI and ensure that SI does not result in clobbering. If this domain

information were not inserted until after the goal G were identified, then these planning

actions would not be possible, and there would be no possibility to improve performance by

re-directing search.

32.3 Using Abstract Operators in Establishments. Representing goals with an

abstract operator leads to the possibility that an abstract operator may be used to establish

new operator preconditions that it was not specifically inserted to establish. On the surface,

this appears to be overcommitment on the part of the planner because there is no guarantee

that the outstanding goals represented by the abstract operator will be achieved. However, the

alternative choices may result in worse overcommitment and fail to take advantage of available

information. To see this, consider the case in which an abstract operator A1 is the only existing

establisher for a new operator's precondition p. Assume that to avoid overcommitment, A l

should not be used as an establisher. Two alternatives exist. The first alternative is to insert a

new abstract operator A2 which has p as an effect, thus committing to doing additional work.

Now the planner must find reductions for both Al and A2. The planner has also committed

to a course of action that assumes the failure of Al and the accompanying failure of the

concrete operator which requires Al. This planning choice is based on no new information

and ignores existing information about goals to which the planner is already committed. The

second alternative is to delay the choice of establisher for p until more information becomes

available. For example, rather than establishing p with Al, the planner could choose to

find a reduction for Al that includes a concrete establisher for p. If a such a reduction

is found, then this alternative was a poor choice-it would have been better to establish p

with Al. If no such reduction is found, then the planner knows that Al would have been

a poor choice for establishing p, but it has no new information helpful to finding a better

choice. The second alternative also ignores the planner's previous commitment to goals and

40

overcommits the planner to searching for reductions of Al. When knowledge of goals exists,

the planner should make decisions based on the assumption that the goals will be achieved.

The two alternatives to this approach disregard information and result in overcommitment

that may be worse than committing to using an existing abstract operator as an establisher.

Sections 3.4.1 and 3.4.3 discuss search control in HINGE designed to limit the impact of

possible overcommitment associated with abstract operator establishment

32.4 Definitions Required by Abstract Operators. Abstract operators appear in

plans, but they should not appear in a solution because they represent goals and do not

specify action. Therefore, introducing abstract operators requires a change to the definition

of "solution" to avoid solutions that contain abstract operators. More generally, abstract

operators in HINGE's planning model leads to a definition of typed plans.

Definition: Abstract and Concrete Plans An abstract plan is a plan that
includes at least one abstract operator. In contrast, a concrete plan is a plan that
includes only concrete operators.

Definition: Solution A solution to a particular planning problem is a concrete

plan which is applicable and includes the initial plan of the planning problem.

Finally, HINGE's planning model requires some method of eliminating abstract opera-

tors in a plan. An abstract operator represents work to be done, and it is important to recognize

that it may not be desirable to do all the work at once. The principle of least commitment

suggests that some of the work could be done more efficiently if it is put off until more infor-

mation is available. Therefore, the method of abstract operator replacement requires a data

structure which is essentially a sub-plan, possibly containing other, new abstract operators to

represent the delayed work. Such a sub-plan is called a reduction in the general case, or a

decomposition if it is a sub-plan that contains only abstract operators. In HINGE, planning is

the process of replacing abstract operators with reductions, or "reducing" abstract operators.

Definition: Reduction; Decomposition A reduction of an abstract operator
in a plan is a set of operators called reduction operators and a set of ordering
constraints such that if the reduction replaced the abstract operator in the plan

41

1. the reduction operators would establish preconditions currently established
by the parent abstract operator,

2. all preconditions of all reduction operators would be established, and

3. no clobberers of any establishment would exist.

A decomposition is a reduction that includes only abstract operators.

From this definition, it should be clear that reducing an abstract operator maintains the

applicability of the plan.

The HINGE planning model represents planning as a tree search; in the tree, a par-

ent/child relationship exists between an abstract operator and its reduction. For example, in

Figure 13, abopi and abop2 with no ordering constraints are the reduction, or in this case, the

decomposition of root.

3.2.5 The Non-deterministic Algorithm of HINGE's planning model. HINGE's

planning algorithm is specified below as the non-deterministic algorithm FIND-PLAN whose

argument is a VHPLAN.

1. If the current plan of the VHPLAN is a solution to the planning problem, return the

current plan.

2. Otherwise, there must be at least one abstract operator in the current plan. Select an

abstract operator A from the current plan and for A find all reductions. The algorithm

for finding reductions is McAllester and Rosenblitt's planning algorithm described in

Chapter H. If there are more reductions, choose one, substitute it for the parent abstract

operator in the current plan, and recursively call FIND-PLAN with this new VHPLAN

that results; otherwise, backtrack.

Some differences between HINGE's algorithm and the modified version of McAllester

and Rosenblitt's algorithm (Section 2.2.4) seem apparent, but they are actually quite similar.

The major difference between the two algorithms is that they use different data structures

which support different types of search control. HINGE's algorithm uses the VHPLAN data

structure which includes a hierarchical plan tree with abstract operators representing subsets

42

of the outstanding goals. The hierarchical plan tree allows representation of a particular set of

the goals of equal depth, while abstract operators provide a representation for a set of goals

that are to be solved simultaneously. Both of these sets of goals are distinguished subsets of

the whole set of outstanding goals being considered by the planner. The ability to represent

these two subsets of the outstanding goals is important for directing search. Most importantly,

representing a subset of goals to be solved simultaneously is critical for representing the part of

the current problem that should be solved with reuse. In contrast, McAllester and Rosenblitt's

algorithm uses the whole set of outstanding goals. This set representation cannot represent

a distinguished subset of goals and thus cannot indicate a subset of goals to be achieved

simultaneously. With McAllester and Rosenblitt's model, it is still possibly to find a reuse

candidate that solves part of the problem, but the data structures used cannot represent what

part should be solved. The result is that, if such information exists, it cannot be used to direct

search. Section 3.6 discusses this point further.

Like McAllester and Rosenblitt's algorithm, the algorithm above is non-deterministic;

both algorithms use depth-first search, but neither algorithm specifies how to make choices

at branch points. The implementation of HINGE as a planner requires that search control

be specified, thus HINGE's planning model is more general than the HINGE planner itself.

HINGE's search control methods are discussed in Sections 3.4 and 3.7.

3.3 HINGE Overview

HINGE is a plan-space macro planner that includes an explanation-based learner for

learning new plans and sub-plans. Because HINGE is a plan-space planner, it can insert

operators anywhere in the plan and includes only required ordering constraints on operators as

the plan is developed. Moreover, HINGE can optionally expand a macro in a plan, substituting

its corresponding primitive operators and necessary ordering constraints for the macro itself.

Thus, HINGE is capable of interleaving the primitive operators of macros to solve planning

problems. HINGE and SNLP+EBL are the first planning systems that learn and can reuse

macros in this way.

43

HINGE's search method is hierarchically-structured on the number of goals. By trying to

solve goals simultaneously, HINGE promotes reuse of more powerful macros before weaker

ones. The hierarchical structure imposed on search also facilitates sub-plan learning. If

goals cannot be solved simultaneously, HINGE incrementally decomposes them using various

strategies which are described in Section 3.7. Eventually, decomposition results in single

goals that HINGE solves using generative planning. Because of its planning model, HINGE

is sound 2 and causal structure systematic.3 Because HINGE considers all reductions using an

exhaustive search strategy, HINGE is also complete.

HINGE uses efficient storage, indexing, and retrieval mechanisms that, when the the

initial state and problem goals are known, support polynomial-time access of macros that are

guaranteed to be appropriate. If the problem must be decomposed, then the initial state and

problem goals are known only for a sub-problem; in this case, the retrieval mechanism allows

polynomial-time access of macros likely to be appropriate. The retrieval mechanism does not

require general search and thus does not vary exponentially with the size of the macros or the

number of them in the library. Storage and retrieval in HINGE are described in Chapter IV.

HINGE includes an EBL component for learning macro operator schemas from the solutions

to planning problems. HINGE's overall architecture is represented as shown in Figure 2 on

page 2, where the output of the learner is macro operator schema, rather than operators.

HINGE is a domain-independent planner designed to use domain knowledge when it

exists to enhance performance. For example, HINGE allows modular insertion of domain-

specific procedures for choosing an abstract operator for reduction (goal ordering) and for

selecting a reduction. These procedures are not described in this document HINGE also

performs better when there is a domain-definition of object independence. For example,

knowledge of object independence was used to build a more specific index for the block-

stacking problems which were used to develop and test HINGE. Independence is also the basis

for two decomposition methods described in Section 3.7. Although a domain-definition of

2Somundes$ means that any plan re•uned is a solutim of the prblem being considered.
3 Each node in the space being searched is defined by a plan and the set of estabshments associatedWith the

plan.

44

object independence is helpful for improving planning performance, lack of domain knowledge

does not affect HINGE's completeness. Alternative methods of indexing and decomposition

are available. However, for learning, a definition of independence is required4 , as described in

Section 2.3.1. For example, two stacks of blocks that are both on the table are not considered

to be related because of the special nature of the table. This domain information is required to

avoid learning incorrect concepts.

HINGE is implemented in Common Lisp and CLOS and includes a number of utilities

for displaying and analyzing the planning process. As a planning system designed to support

further research, HINGE can easily be configured to run in many different modes. More than

twenty global variables are used to vary HINGE's operation; many of the more important of

these variables can be set using a simple graphical user's interface that is part of HINGE.

HINGE has been used by three researchers to date. HINGE prototype applications include

a scheduling algorithm for setting up a meeting without violating constraints imposed by the

attendees, a labor-crew scheduler for a production shift, and an air campaign planning system.

3.4 Search Control

HINGE spends much of its time doing bookkeeping to maintain the plan tree and causal

model used to ensure plan applicability when reductions replace abstract operators. These

processes are interesting to define and challenging to implement, but they are well under-

stood (Chapman, 1987, Currie and Tate, 1991, McAllester and Rosenblitt, 1991, Tate, 1977,

Yang and Tenenberg, 1990). However, the search control used in HINGE is unique and inter-

esting. As stated in Section 3.2.5, the overall search strategy is depth-first, and chronological

backtracking is used to retract poor choices. 5 Within this framework, there are three places

which obviously impact search in the HINGE algorithm: selection of the next abstract opera-

tor for reduction, generation of reductions, and preference-ordering of reductions. By setting

4It is possible to derive independence by analyzing the plan before learning as done in PRODIGY/ANALOGY
(Veloso. 1992), but HINGE lacks the capability to do this and depends on a domain-definition of independence.

5HINGE seardbes its plan-space depth-first, but as discussed in Section 3.4.1 HINGE selects abstract
operators from the plan tree using a breadth-first criterion. There should be no confusion about these terms
because HINGE's plan-space is not the plan tree, but rather the changes in the leaves of the plan tree.

45

global variables, HINGE may be re-configured to alter its method of doing each of these.

However, HINGE's default behavior is described here. This default behavior is designed to:

* focus attention on high-level goals

* reuse the most powerful reuse candidates first

* provide multiple opportunities for reuse

"* limit the impact of future work

"* make the best local decisions possible.

3.4.1 Selection of an Abstract Operator to Reduce. HINGE selects abstract

operators to focus attention on important goals and to promote reuse of the most powerful

macros first. Selecting an abstract operator to reduce amounts to choosing the order of goal

achievement. HINGE's default method is to select abstract operators based on their depth in

the plan tree: those of least depth. This strategy focuses attention on problem goals before

operator sub-goals and avoids poor planning decisions which lead to blind alleys or looping.

For abstract operators that are equidistant from the root, HINGE prefers the one with the

largest number of effects because it corresponds to a potential opportunity to reuse the most

powerful reuse candidate.

Selecting abstract operators based on least depth in the plan tree also reduces the

potential overcommitment of depending on an existing abstract operator for precondition

establishment. Existing abstract operators are always higher in the plan tree than new abstract

operators. Therefore, if an existing abstract operator is used to establish a precondition of an

operator external to the abstract operator's reduction, testing this choice is not delayed as it

might be if abstract operators were selected some other way.

3.4.2 Generation of Reductions. In HINGE, reductions take on one of three forms

as shown in Figure 14. Each form is described by the number and types of operators in the

reduction. If the reduction includes a concrete operator, then it will be composed of either

46

nmicr IIabp2

7

d)sa r, ' B) ants, 0)

Figure 14. The three types of reductions allowed in HINGE.

a single concrete operator or a concrete operator and an abstract operator. Otherwise, the

reduction will be a decomposition and will include multiple abstract operators (often two of

them). These choices represent the simplest ways to construct a reduction and they correspond

to three possibilities when trying to achieve goals represented by an abstract operator's effects.

By definition, a reduction is required to achieve the effects of its parent abstract operator. If,

by instantiating a library operator schema, a concrete operator can be found that achieves

the effects of the parent abstract operator, then this concrete operator forms the basis of

a non-decomposition-type reduction. If all preconditions of the concrete operator can be

established by existing plan operators, then no other operator is required and the reduction

is of the first form. Alternatively, if one or more preconditions of the concrete operator

cannot be established by an existing plan operator, then HINGE adds a new abstract operator

to establish these preconditions, and the reduction has the second form. Reductions of the

second form always have at least one ordering constraint corresponding to the establishments

made on behalf of the concrete operator. The third form of reduction arises in the event that

the parent abstract operator has multiple effects and no operator schema in the library can

be instantiated to achieve all of these effects. In this event, HINGE employs decomposition

methods described in Section 3.7 to separate the goals represented by the parent's effects. This

results in a reduction (a decomposition) that includes only abstract operators with no ordering

constraints between any of them.

47

To limit the amount of future work, reductions are required to achieve all effects of the

parent abstract operator. If a reduction fails to achieve all these effects, then some work is left

undone and it is impossible to quantify the additional work required. In addition to limiting

future work, insisting that the concrete operator of a reduction achieve all of the effects of the

parent abstract operator is consistent with a strategy of selective reuse and greatly simplifies

the macro retrieval method used in HINGE. This method results in far fewer reductions than

would otherwise be generated.6 If macros must achieve all effects of the parent, then the

effects of operator schemas are a useful index for macro operator schema retrieval. Selective

reuse and macro retrieval are described in Chapter IV.

In general, there are many ways to decompose an abstract operator, and the choice

of decomposition clearly affects the search process. Decomposing an abstract operator is

equivalent to partitioning a set of goals. One way to partition a set of goals is to make

each element a singleton subset. This approach corresponds to completely decomposing an

abstract operator with n effects into n abstract operators with 1 effect. To provide multiple

opportunities for reuse, a less drastic approach is required because reuse is not possible unless

multiple goals are to be achieved. Section 3.7 describes several decomposition methods

developed for HINGE. These methods may be used to incrementally decompose problems

and provide multiple opportunities for reuse, with the most powerful reuse attempted first.

By definition, no operator of areduction may be aclobberer of any existing establishment

in the plan. Therefore, the process of finding reductions includes a procedure that eliminates

the possibility of clobberers either by adding ordering constraints or by discarding the reduction

(when adding ordering constraints is not possible). As described in the definition of FIND-

PLAN (page 42), reductions are found using McAllester and Rosenblitt's algorithm FIND-

SOLUTION (page 19). For completeness, both alternatives in step 2 of FIND-SOLUTION

must be considered.

61requiring reductions to achieve all efects of the parent abstact opeasto has the disadvantage that some
opembx schemas that could be instantiated to achieve many of the parent's effects might be overlooked.
Section 3.7.3 discusses a decomposifim method that increases the visibility of such operator schemas and
promotes their use.

48

3.42.1 Serendipity and Phantom Operators. Sometimes decomposition

results in an abstract operator whose effects, by coincidence, can be satisfied by existing

operators in the plan. Such effects correspond to goals that do not require achievement by new

operators. It is important not to insert operators to achieve these goals, for doing so implies

that action is required when it is not. In HINGE, there is a data structure called a "phantom

operator" which exists only to associate a goal with an existing operator whose effects happen

to establish it. A phantom operator is simply a concrete operator whose preconditions equal

its effects. Phantom operators, being concrete, may form the basis of a reduction just as an

instantiated library operator schema might. Interpreting a plan produced by HINGE must

include removing any phantom operators and redirecting establishments as needed.

3.42.2 Phantom Goals. While phantom operators are an artifact of HINGE

planning, phantom goals, on the other hand, are common in planning domains and are not

unique to HINGE Phantom goals are problem goals that appear in the initial state and will not

be changed by the plan or require an operator to achieve. Before a plan is produced (and lacking

special domain information), it is impossible to tell whether a problem goal that appears in

the initial state is a phantom goal (will remain unchanged by the plan). Therefore, possibly-

phantom goals present some difficulties that must be handled during search. Section 3.7.2

describes a decomposition method that is used to alter search based on the presence of problem

goals that possibly are phantom goals.

3.4.23 Serendipity and Reduction Ordering. A concrete operator in a

reduction under consideration can, by coincidence, establish one or more preconditions for

operators in the plan other than those established by its parent abstract operator. This ability

to establish extra preconditions is valuable if the preconditions are currently established by

abstract operators. If so, then the reduction has additional merit that should be considered by

the planner. HINGE takes advantage of this type of serendipity as described in Section 3.4.3.

49

Table 1. Cost weights for ordering reductions by means-everything analysis.

Reduction descriptor META Value
Phantom Operator Reduction (Existing operators achieve goals) -10,000
Serendipitous Establishment by Operator (per establishment) -500
Abstract Operator (per abstract operator) 1,000
Abstract Operator Effect (per abstract operator effect) 500
Establishment by Abstract Operator (per establishment) 100
Required Ordering Constraint (per constraint) 50
Preconditions (per precondition) 20
Effects (per effect) 10

3.43 Ordering Reductions: Means-everything Analysis. To control search, it is

helpful to assess, in as much detail as possible, the impact of inserting a particular reduction

into the plan. Means-everything analysis is a domain-independent extension of means-ends

analysis (Newell and Simon, 1963). For operators in the reduction, means-everything analysis

considers not only the usefulness of the primary effects, but also the impact of side effects and

preconditions. In particular, means-everything analysis considers

9 the ability of existing operators to satisfy goals

* the usefulness of operator effects for serendipitously satisfying existing goals

* the potential work associated with unestablished preconditions

* the potential for backtracking because of dependence upon planning commitmer,-S

(goals), rather than existing operators

* the potential for backtracking because of required ordering constraints

e the simplicity of the operator in terms of the number of its preconditions and effects

Means-everything analysis is similar in spirit to the domain-independent heuristic exten-

sion of means-ends analysis in SNLP, but means-everything analysis is more comprehensive

in terms of the number of factors that it considers. In HINGE, means-everything analysis is

implemented as a metric function on reductions. Table 1 shows the relative values assigned

to each factor.

50

'0

The costs shown in Table 1 were chosen based on extensive problem solving experience

with HINGE. During problem solving, it is most important to avoid doing any work that has

already been done. Therefore, a reduction containing a phantom operator is given a high

negative cost because phantom operators represent outstanding goals which can be achieved

by existing plan operators and require no additional work. Recognizing reductions that achieve

goals serendipitously is also important, although not as important as avoiding work that is

already done. Therefore reductions that support serendipitous establishments are awarded a

moderate negative cost. To direct search, choosing reductions that require no extra work is

quite important-more important than recognizing serendipitous goal achievement, but not as

important as avoiding work that is already done. Furthermore, the amount of extra work is

also important. Therefore, an abstract operator in a reduction adds a relatively high cost, and

each effect in the abstract operator adds a moderately high cost. Reductions that depend on

an external abstract operator for one or more establishments are penalized, but not as much

as if they include an abstract operator. However, if a concrete operator can establish the same

precondition, HINGE always prefers the concrete operator as an establisher. Each ordering

constraint in the reduction costs something because ordering constraints impact the planner's

ability to insert new operators. Ordering constraints are not considered as bad as depending

on an external abstract operator to establish a reduction operator's precondition, however.

Finally, the preconditions and effects of reduction operators cost a small amount to show

preference for simple reductions over complicated ones.

Some of the weights are designed to to allow one factor to overwhelm all others, while

other weights give factors more equal consideration. For example, a reduction with a phantom

operator is considered to be very desirable because it represents knowledge of a part of a

sub-problem that is already solved. Therefore, a reduction containing a phantom operator is

currently preferred in any case.7 In contrast, if two reductions both contain only one concrete

7MINGE's reductio metric makes no assumptions about the form of redhctious allowed. Therefore, it is
possible that a reduictios which includes many abstract operaton and a phantom operator would not be preferred

51

operator, there is no preference between them when one of the concrete operators has two

preconditions and one effect while the other operator has one precondition and four effects.

3-5 Planning in HINGE

HINGE plans by reducing abstract operators in an abstract plan until there are no more

of them and the plan is concrete. At all times, HINGE maintains the applicability of the plan by

finding reductions using the causal model implied by the set of recorded establishments which

are part of the VHPLAN. It may be helpful to some readers to consider a simple example of

generative planning at this point.

Figure 15 shows the definitions of the primitive operator schemas for the block-stacking

domain. The move-to operator schema represents the action of moving some block from the

top of one stack to the top of another stack. Similarly, the stack operator schema represents

moving a block from the table to a stack and the unstack operator schema represents moving

a block from a stack to the table. In all operator schemas, variable constraints force variables

to unify only with block names and not to unify with the table. (Otherwise, move-to alone

would suffice). Figures 16-20 show how the VHPLAN emerges as HINGE solves Sussman's

Anomaly.

HINGE's input is an initial plan, consisting of operators init and final which are made

from the initial state and problem goals according to the definition of initial plan given in

Section 2.2.2, and a library of operator schemas that may be used to construct reductions of

abstract operators. Because this example is for generative planning, assume that the library

contains only those operator schemas shown in Figure 15. As planning begins, HINGE adds

an abstract operator as the root of the plan tree and adds establishments to make the initial

plan applicable, producing the VHPLAN shown in Figure 16. The root abstract operator has

no preconditions and has effects equal to the problem goals. In Figure 16, the effects of the

root abstract operator have been used to establish the preconditions of final to make the plan

applicable. The ordering constraints shown in Figure 16 exist because, by definition, i,,r

precedes all other operators while all other operators precedefinal.

52

prgconftt cwu

~-Y)

dsar(? Z)

Icf(7-Kab.)I ion(?-K7-V)I

Ion(?-XtaI)I IcIXaf(?-Y)I

Figure 15. The primitive operator schemas for the block-stacking domain.

Figre16.Th iitil HPAN orHIGE olin Susnans Aomly

Fiue1.TeMPANatracmlt decmpo ito of th rot opmerao.

53 vt ----

To plan, HINGE recursively selects an abstract operator to reduce, annotates the ab-

stract operator with all possible reductions, and replaces the abstract operator with a selected

reduction to produce the successive plan. Selecting abstract operators, finding reductions, and

choosing a reduction to replace the parent abstract operator are planning decisions that are

specified in Section 3.4, although this simple example will not illustrate all facets of search

control From the VHPLAN shown in Figure 16, HINGE can only select the root operator

for reduction. Because no operator schema in the library can be instantiated to establish the

effects of the root operator, the only reductions must be decompositions. Furthermore, because

the only decomposition possible for an abstract operator of two effects is a complete decom-

position, HINGE finds only one reduction, the complete decomposition. Reducing the root

operator with its complete decomposition, adding new ordering constraints, and redirecting

establishments results in the plan indicated by the VHPLAN of Figure 17.

HINGE must now select between reducing abopi and abop2. Because both abstract

operators are equally deep in the plan tree and because they have an equal number of effects, the

choice is arbitrary. Suppose HINGE selects abopl. Two operator schemas in the library may

be instantiated to establish the effect on(AB). The schemas are named move-to(?-X,?-Y) and

stack(?-X,?-Y). Both of the concrete operators that result from the operator schemnas require

an abstract operator to help establish their preconditions and therefore both of the resulting

reductions include at least one ordering constraint. No decompositions are possible because

abopl has only one effect. Therefore, there are only two possible reductions of abopi. Neither

reduction has clobberers. HINGE selects reductions based on means-everything analysis and

the heuristic weighting function described in Section 3.4.3. HINGE selects the reduction of

stack(A,B) because it has fewer preconditions that cannot be established by existing operators

in the plan. Thus, the abstract operator required to partially establish stack(AB) has fewer

effects than the one required for move-to(AB). The relative weights make this factor overwhelm

another factor that also favors the reduction of stack(A,B): move-to(AB) has one more effect

than stack(A,B), meaning that move-to(A,B) is more complex that stack(AB). Figure 18 shows

the VHPLAN that results after HINGE reduces abopl.

54

mi(KEY:

011~

-~ 2f~a

peet~aiigM.kd Saul aCwi

C.dbd o od fl

Figure 19. The VHPLAN after reducing abop 2.

mu*i ay
ofi-b L iddur

Fiue 0 heVPANrpesnig ocrt la euligfrmrduigabp3

55

HINGE must now select between reducing abop2 and abop3. Because abop2 is less deep

in the plan tree than abop3, HINGE selects abop2. Once again, two operator schemas in the

library may be instantiated to establish the effect on(B,C). As before, the schemas are move-

to(?-X,?-Y) and stack(?-X,?-Y). However, this time the concrete operator that results from

instantiating stack(?-X,?-Y) does not require an abstract operator to establish any preLconditions,

while the concrete operator that results from instantiating move-to(?-X,?-Y) requires an abstract

operator to establish on(B, ?-Z). Once again, no decompositions are possible, and there is a

choice between just two reductions. As before, neither reduction has clobberers. HINGE

uses means-everything analysis again to select the reduction of stack(B,C). This time, it is

the existence of an abstract operator in the reduction of move-to(B,C) that overwhelms other

considerations in selecting the reduction. HINGE installs the reduction of stack(B,C) in the

VHPLAN by making it the child of abop 2 and redirecting ordering establishments as shown in

Figure 19. Notice the ordering constraint that requires stack(B,C) to come before stack(AB).

HINGE adds this ordering constraint to preclude stack(AB) from clobbering the required

establishment <init, clear(B), stack(B,C)>.

Finally, HINGE must reduce the remaining abstract operator, abop 3. Two operator

schemas in the library may be instantiated to establish the effect clear(A), and there are

two reductions possible. The instantiated operator unstack(C) requires no abstract operator,

so HINGE installs a reduction containing unstack(C), resulting in the VHPLAN shown in

Figure 20. Notice the ordering constraint that constrains unstack(C) to come before stack(B,C).

HINGE adds this ordering constraint to preclude stack(B,C) from clobbering the establishment

<init, clear(C), unstack(C)>. There is also an ordering constraint between unstack(C) and

stack(A,B). This constraint was redirected from abop 3 when it was reduced by unstack(C).

The current plan is represented by the leaf nodes of the plan tree, init, and final. To

interpret this plan, the leaves of the plan tree are interpreted as actions and the ordering

constraints are used to order actions. In this example, the plan is totally ordered, but that is

not generally true.

56

In this example, no backtracking occurred to retract a poor planning decision. However.

in the event that an abstract operator has no reductions, HINGE backtracks chronologically by

removing the reduction that includes the abstract operator and substituting a different reduction

associated with the abstract operator's parent If the parent has no more reductions, HINGE

backtracks until some ancestor has an untried reduction. If the root operator is reached and has

no more reductions, then HINGE reports failure. Alternatively, if no more abstract operators

remain in the current plan, HINGE returns the solution.

3.6 Hierarchical Reuse and Efficiency

HINGE is intended to promote reuse by structuring both the storage and reuse oppor-

tunities of learned macros hierarchically, where the hierarchy is based on the number of goals

to be achieved. The number of goals is a heuristic indicator of the amount of work required

and hence, the search that may be saved by reuse. In addition, the numbei, of goals is a

feature which may be used to index stored reuse candidates. HINGE actively promotes reuse

of the most powerful candidate available, and in particular, HINGE seeks reuse candidates in

decreasing order of the number of goals to be achieved. Thus, by default, HINGE initially

acts like a case-based planner in that it attempts to solve the whole problem with one reuse

candidate. Otherwise, the problem is decomposed using methods described in Section 3.7 and

the subproblems are solved through recursive calls to the planner. Eventually, decomposition

will result in abstract operators that each represent only one goal. In this event, HINGE

acts like a generative planner, trying to solve the problem using only primitive operators.

Using this strategy of hierarchical search, HINGE maximizes the likelihood of performance

improvement through reuse and gracefully degrades to generative planning whenever reuse is

not possible.

There is a subtle difference between the data structure used in the HINGE model and

a goal set, but the difference has an important impact on search control. As stated in Sec-

tion 3.2.5, the biggest improvement of HINGE's model over McAllester and Rosenblitt's

model is that the HINGE algorithm manipulates a data structure (abstract operators in the

57

VHPLAN) that can represent a subset of the outstanding goals that should be achieved simul-

taneously. Because this set of goals is also used as an index for retrieving a reuse candidate,

the HINGE model can specify a desired reuse candidate. Conversely, a set representation

for goals cannot represent a distinguished subset; thus for models that depend on a goal set,

finding a good reuse candidate is more haphazard. To illustrate this point, consider the block-

stacking problem shown in Figure 21 and the two macros shown in Figure 22. A planner that

depends on a goal set might choose to insert Macro 2 because it achieves more of the problem

goals than does Macro 1. For example, STRIPS would select Macro 2, because STRIPS uses

means-ends analysis and a difference metric based on the number of goals solved.8 Alterna-

tively, if a planner can represent distinguished subsets of the outstanding goals, as HINGE can

with abstract operators, then it can specify that the goals on(AB), on(B,C), on(CD) should

be solved simultaneously, and therefore that Macro I is preferable to Macro 2. For example,

these three goals are represented by abop I in the VHPLAN shown in Figure 23. Macro I is

a concrete operator that achieves all effects of abop 1 and serves as the basis of a reduction

for abop 1.

Knowledge of which subsets of the outstanding goals should be achieved simultaneously

often comes from the domain, rather than from the HINGE planning model. For example,

relationships between objects can sometimes be used to identify independent sub-problems

or problems that are likely to be independent. Here, the term "independent' implies that no

harmful goal interaction will occur in the plan. In Section 3.7, for example, two goal decom-

position strategies which are based on a domain-definition of independence are described. If

such domain knowledge exists, then the HINGE model can represent it in a data structure and

use the data structure to direct search.

3.7 Decomposition Methods

In the HINGE model, if no appropriate reuse candidate exists for a particular problem,

then the planner must have a method for decomposing abstract operators (partitioning a set

"8Mean-eveaythiug analysis would pick Macro 2 also.

58

Problem goals ((on A B). (o418 C). (on C D)
(on0 E F). (0o F (), (on G H))

Figure 21. A block-stacking problem.

Macro 1 acoheves:

Problem goals: f(on A B), (on B C). (on C D))

Macro 2 achleves:

Problem goas: (ion A B). (on B C). (on E F). (on F 0))

Figure 22. Macros thatcould be used to solve part of the block-stacking problem in Figure 21.

root

on(oAa)Ink on(BC) final

Ofon CC Dj

on(E.F) on(AB)
on(.WiIo)onj&.H) on BC.

on(jAb) on on• d-l

on F.t, Don)F,)

onlEF iabl s)f

on1(Qtabb)

Cis C

cis EB.C) on(.)

Figure 23. A HINGE VHPLAN representing sets of goals to be solved simultaneously for
the f '-ck-stacking problem.

59

of goals). There are 0(a') ways to decompose a set of n goals. Therefore, finding a good

decomposition by exhaustive search may be expensive depending on the contents of the library

of reuse candidates and on the domain (for the distribution of good decompositions in the space

of all decompositions).

One apparent method of goal decomposition is complete-decomposition: trying to

achieve each goal by itself. This method precludes reuse, but is good when reuse fails and

generative planning is required. Other methods of decomposition are required for reuse. In

this research, several methods were developed, and in HINGE, these methods are applied in

a particular sequence which is designed to maximize reuse opportunities and separately solve

independent or likely-independent sub-problems. The developed decomposition methods are

based on a domain-dependent definition of independence, the existence of possibly-phantom

goals, and contents of the operator schema library. The last decomposition method applied

yields a complete decomposition. This sequence of decompositions gives HINGE its graceful-

degradation behavior and guarantees completeness because the underlying generative planner

in HINGE is complete. The following sections describe different methods of decomposition

used in HINGE.

3.7.1 Independence-based Decomposition. When a domain-definition of indepen-

dence exists, independence iF. a useful basis for decomposition. Operators are described by

propositions which themselves describe the relationship between objects in a domain (or an

attribute value for an object). Often a relationship between two objects can be used to describe

a dependence between them that is important from a planning perspective. For example, in

Sussman's Anomaly shown in Figure 7, it is clear that in the initial state Block C is related

to Block A by virtue of the relation on(C, A). By analyzing a set of propositions, sets of

related objects can be identified. Because a state is a set of propositions, the set of objects

in a state may be partitioned so that each partition-set contains objects related only to other

objects in the partition-set. For example, the objects in the initial state shown in Figure 7 on

page 20 are {Block A, Block B, Block C} and the set of related sets of objects (the partition)

is { {Block A, Block C} {Block B } }. To find the independent objects in a plan, it is necessary

60

to analyze all the states visited when the plan executes. Alternatively, it is possible to predict

the independent objects in a plan by analyzing the operators available to transition between

states. For example, in most block-stacking examples, the primitive operator schemas are

defined so that objects that are independent both in the initial state and in the problem goals

are independent in some plans. Because of this, the independent objects can be used to define

sub-problems which can be solved independently.

In HINGE, problems which cannot be solved with a whole-problem solution are de-

composed using problem-independence when a domain-definition of independence exists. As

an approximation to problem-independence, HINGE also uses goal-independence which is

based on objects that are unrelated in the problem goals.

3.7.2 Phantom-goal Decomposition. Sections 3.4.2.1 and 3.4.2.2 described phan-

tom operators and phantom goals. While HINGE's phantom operators are an artifact of

HINGE planning, phantom goals or at least "possibly-phantom" goals are common in most

planning problems. Any proposition that appears in the initial state and in the problem goals

is possibly a phantom goal. Possibly-phantom goals arise because, before planning, it is hard

to predict how the plan will affect objects. Therefore, the user of a planning system generally

includes in the problem goals any initial-state proposition that should be maintained. For

example, in formulating a plan for deploying troops, one problem goal might be to have trans-

port aircraft engines in working order after deployment, even though the engines are working

initially. The planner might be able to find a plan that does not affect the working state of the

aircraft engines, in which case the goal is a phantom-goal, but if not, it will have to come up

with a plan that includes repairing the engines to restore them to working order.

Possibly-phantom goals are a useful basis for decomposition. Any goal that rnms out to

be a phantom-goal requires no additional operators to be inserted by the planner. Therefore,

it is often a good strategy to separate possibly-phantom goals from other goals to delay their

consideration. In HINGE, the set of possibly-phantom goals is decomposed completely, and

61

the abstract operator that represents each goal is artificially deepened in the plan tree to delay

its consideration.

3.7.3 Library-based Decomposition. Because the objective of decomposition

methods in HINGE is to increase opportunities for reuse, it makes sense to examine the

potential contribution of the library as an information source. After all, a macro operator

schema can only be reused if it exists in the library. This section presents two methods by

which knowledge of library contents can be used to find a decomposition. An advantage of

using either of these methods is that retrieval of the reuse candidate can happen at the same

time as the decomposition and without additional cost.

When no domain-dependent notion of independence exists, these methods can be useful.

However, they are not useful for increasing the size of a library which contains only primitive

operator schema. Clearly no reuse candidates can be retrievd if the library has none to begin

with. By extension, these methods are less likely to -work if the library is sparsely filled than

if it contains many different reuse candidates.

3.73.1 Big-chunk-decomposition. In planning with reuse, the best perfor-

mance occurs with reuse of the macro that saves the most search. Normally, this macro

corresponds to the one that solves the most problem goals. When the library has no macro

operator schema that achieves all of the n problem goals, the best alternative is to find a macro

operator schema that solves n - 1 of the problem goals. HINGE's method of big-chunk-

decomposition uses this approach. This decomposition method requires a procedure that

decomposes n goals into a pair of sets, one with n - s goals and the other with s goals, where

s = 1,2,3, ...SLimit. In HINGE, all such pairs of sets are found for a particular value of s

and reuse candidates are sought to achieve goals in the larger set of the pair. If no candidates

are returned, the value of s is incremented unless its limit has been reached, and reuse candi-

dates are sought again. The method fails if s reaches its limit before a reuse candidate is found.

Alternatively, if a reuse candidate is found, HINGE forms a decomposition of the problem

goals based on the reuse candidate. For a given s, HI• gig-chunk-decomposition yields

62

(n!)/(s! * (n - s)!) pairs of sets (so large values of n and SLimit are unlikely to give good

performance).

3.73.2 Same-size-decomposition. While big-chunk-decomposition is un-

attractive as the size of the small subset increases, same-size-decomposition is a polyno-

mial method which uses the library to decompose a planning problem. In same-size-

decomposition,9 reuse-candidates are selected arbitrarily from the library and tested to see

if

1. they achieve some of the outstanding goals and

2. their preconditions can be established by existing plan operators.

If a reuse candidate's effects are a subset of the outstanding goals and if the candidate's

preconditions are a subset of any of the possible states in which it is applied (according to

operators and ordering constraints in the plan), then the reuse candidate solves part of the

problem. The solved part of the problem and the remaining part indicate a decomposition.

As discussed in Section 4.4.3, the subset tests require 0(n 2) time in the worst case for

each reuse candidate tested. Therefore, in the worst case, n reuse candidates are tested, and this

decomposition method requires 0((n') time. However, even though same-size-decomposition

is a polynomial method, th- i ;er of macros that can be instantiated from library operator

schemas is quite large. For .us reason, good performance is not likely with same-size-

decomposition, and HINGE does not currently implement same-size-decomposition.

3.8 Learning

3.8.1 Learning Mechanism. HINGE's learner is typical of other explanation-based

learning (EBL) procedures used to construct macros for planning systems. To make a macro

9Tae name for this decomposition method is indicative of its development. rather than its usefulness. Because
big-chunk decomposition becomes expensive as the size of the smaler subset increases. another decomposition
method was sought that could decompose problems more evenly at lower cost, and same-size-decomposition
can sometimes do this. However, same-size-decomposition may be used to produce arbitrarily lop-sided decom-
positions as wel.

63

4,

from a plan, all that is needed is to find the macro's preconditions and effects and give the

macro a name. The macro's preconditions are the set of all plan operator preconditions which

require establishers that are external to the plan. The macro's effects are found by simulating

the plan using the macro's preconditions as the initial case. Preconditions and effects of a

macro are subsets of all preconditions and all effects, respectively, of the primitive operators

in the plan represented by the macro; a macro is annotated with this plan, but the plan is not

used during planning unless the macro is expanded. In many macro planning systems and in

HINGE, a learned macro is generalized (made into an operator schema) for compact storage.

In HINGE, macros are learned in response to problem solving without regard to their

usefulness in future planning. When a plan is returned, HINGE learns all sub-plans that save

search when tested on the training problem. Each abstract operator in the plan tree is the

"roof' of a sub-plan; the sub-plan consists of the leaves of the corresponding sub-plan tree.10

After eliminating phantom operators, HINGE learns from each sub-plan that has multiple

concrete operators which are related to one another. As discussed in Section 3.8.2, plans with

unrelated operators are not generally valuable for future problem solving, and learning such

plans leads to potentially large storage requirements. Two operators are related to one another

whenever they appear together in an establishment or, except for an ordering constraint, would

clobber an establishment-in short, whenever there is an ordering constraint between them.

For reasons discussed in Section 3.8.2, HINGE's learning element uses other filters as well,

but none of the filtering criteria depend on a prediction of future utility. Therefore, HINGE

does not learn selectively, as PRODIGY and MORRIS do.

Kambhampati and Kedar have characterized the EBL macro learning techniques as

being unsuitable for learnig plans with partially-ordered operators such as the ones learned

by HINGE. The unsuitability arises because reuse of a generalized solution with partially-

ordered operators may result in variables being instantiated in a way that was not intended.

For example, consider Kambhampati and Kedar's example shown in Figures 24 through 27.

Suppose a planner returns the plan with partially-ordered operators illustrated in Figure 25 for

10The sub-plan must be a concrete plan, and concrete operators are always at the leaves of a plan tree.

64

the problem illustrated in Figure 24. An EBL component like the one used in HINGE returns

the generalized plan shown in Figure 26. It is desirable to ensure that any total order of this

partial order of operators will solve a new problem. Now, consider using the generalized plan

on the problem shown in Figure 27. It is possible to instantiate the generalized plan to solve

the new problem by binding the variables ?-W and ?-Z both as B. However, this plan fails

unless a particular total order is imposed on the operators. Kambhaimpati and Kedar think that

the generalized plan should be able to solve the new problem, but doing so is not trivial. They

state

To avoid this problem, the EBG [EBLI algorithm needs to be more systematic
in accounting for all possible interactions among operators corresponding to all
possible total orders consistent with the partial ordering. There are two options
for doing this. One is to modify the algorithm: For instance, repeatedly compute
the weakest conditions of all total orders of the partial order and then conjoin them
in some way. Another option is to modify the input: Provide a full explanation
of correctness of the instantiated partially ordered plan, and use that explanation
to produce the correct generalized initial conditions for the generalized partially
ordered plan. (Kambhampati and Kedar, 1991)

Kambhampati and Kedar chose the second approach. They present an interesting and complex

technique based on Chapman's modal truth criterion to guarantee that generalized plans will

be applicable despite the total order chosen.

HINGE solves this problem much more simply by assuming that the generalized plan

in Figure 26 should not be used in the new problem in Figure 27. HINGE's approach to

guaranteeing that generalized plans work for any total ordering of operators is to use variable

separation constraints. For example, in HINGE, the generalized plan in Figure 26 would

also include constraints that the variable ?-W cannot be instantiated to the same object as

is the variable ?-Z and that the variable ?-X cannot be instantiated to be the same object as

the variable ?-Y. In HINGE, even for generative planning, the domain theory necessary to

properly instantiate operator schemas is embodied in variable separation constraints attached

65

A CmFFI JM D

pi ml gom: I kA.B), onW(C.DO))

IIIanW(?-X.?-Y)I

I-dwCX?-Y)I

(•a s •

Figure 24. A problem for a partial-order planner.

d•I0)

Figure 25. The resulting partially ordered plan.

Figure 26. The resulting generalized plan.

(WdIm gof: IoMKB). OW(,C)f)

Figure 27. A problem for which the generalized plan seems appropriate but fails when A is
put on B first

66

to operator schemas.1 For example, if an operator schema has the precondition on(?-X,?-Y),

then the domain theory requires that that ?-X and ?-Y must be instantiated to a different objects.

Using variable separation constraints to restrict the possible misuse of generalized plans is a

simple solution which requires no new algorithm. This simple solution avoids much work at

the expense of some generality during reuse.

3.8.2 Learning Filters. Because they potentially require excessive space to store and

because they are infrequently useful, HINGE does not learn macros whose primitive operators

are unrelated. If the plan represented by a macro M has any two primitive operators which are

unrelated, then the plan has independent sub-plans and in HINGE, M is not learned. Instead,

HINGE learns any of the independent sub-plans that include multiple primitive operators and

represents these sub-plans as macros. Suppose HINGE learns n macros corresponding to the

independent sub-plans with multiple primitive operators. Now consider this question: why

should HINGE learn only the n macros and not M? The answer is that there are potentially

a large number of macros like M that represent plans with independent sub-plans and these

macros are unlikely to be reused. There are potentially a large number of macros like M

because the n macros of independent sub-plans (and the other macros like them already in the

library) may be combined in an enormous number of ways. Each of these combinations solves

a specific, large problem, and the probability of encountering this problem is small (assuming

a somewhat uniform distribution of problems). Rather than learn and reuse macros like M,

HINGE relies on decomposition methods described in Section 3.7 to break up large problems

into their independent sub-problems which can be solved with known macros.

HINGE also filters any macro that does not appear to be useful for saving search.

Including a macro in the set of candidates considered expands the search space. In some

cases such as when the macro is small, the macro does not save enough search to pay for the

expanded search space it creates. To identify these unproductive macros, HINGE tests the

"1 HINGE operators have morm attributes than a name preconditions, and ffects. These additional attributes
are useful in the planning process, but they are not fundamental to describe pimning models or characteristics of
plans. Therefore. these attributes have not been described to simplify the discussion.

67

training problem to see if having the macro operator schema in the library results ii faster

planning than not having it in the library. If performance does not improve, the macro is

discarded. Importantly, this filter is not based on the relative amount of search saved; instead,

all macros that save search on the training problem are learned.

The learner in HINGE also has a filter to keep duplicate macro operator schemas out

of the library. Learning duplicate concepts does not affect the function of the library or

macro operator schemas retrieved from it during the course of planning. However, search-

space expansion and macro testing costs are minimized when duplicate operator schemas are

avoided.

Unlike MORRIS, PRODIGY, and similar problem solvers that rely on selective learning,

HINGE learns all search-saving macros that correspond to independent problems. HINGE

uses filters to avoid learning useless macros, but it does not use filters based on utility in future

planning. For example, PRODIGY uses a selective filter based on (Minton, 1990):

1. a prediction about the relative probability that macros will be used in future problem

solving

2. the relative amount of search saved, and

3. the relative cost of retrieval.

HINGE uses none of these as filter criteria because HINGE does not learn selectively.

3.9 Reuse allowed in HINGE

HINGE's plan-space planning model is primarily responsible for HINGE's ability to

reuse macros more flexibly than state-space macro planners like MORRIS. As discussed in

Section 2.4.3, HINGE, like SNLP+EBL, can insert macro operators anywhere in the plan.

Kambhampati and Chen have concluded that the ability to insert macros anywhere in the plan

allows reuse precluded by state-space planners (Kambhampati and Chen, 1993). HINGE and

SNLP+EBL, developed at about the same time, were the first macro planners with this ability.

68

Both SNLP+EBL and HINGE can expand two macros and, ordering constraints per-

mitting, interleave the corresponding primitive operators in order to solve a problem. This

ability allows HINGE and SNLP+EBL to reuse macros that would otherwise conflict with one

another. (Kambhampati and Chen, 1993)

Like other macro planners, HINGE also has a more flexible reuse policy than case-based

planners whici allow only one reuse candidate and will not reuse candidates below a certain

size. Unlike case-based planners, HINGE can decompose a set of goals which cannot be

achieved directly and reuse multiple solutions from previously encountered problems.

Unlike other macro planners, HINGE explicitly represents certain subsets of the out-

standing goals to direct the search for reuse candidates. This ability, supported by decom-

position methods, allows HINGE to specify and find good reuse candidates much faster than

when outstanding goals are stored in a set.

3.10 Summary

HINGE is a macro planner whose flexible macro insertion capabilities and unique

search strategy promote reuse and facilitate learning for improved planning performance.

HINGE uses abstract operators to represent a set of goals to be solved simultaneously in the

plan. The overall search control in HINGE is depth-first with chronological backtracking.

To focus attention on high-level goals, abstract operators are selected based on their depth

in the plan tree. HINGE seeks reuse candidates that simultaneously achieve the goals of

abstract operators. When no such candidates are possible, HINGE decomposes the goals

represented by the abstract operator to maximize the opportunities for reuse, eventually solving

the problem generatively when no reuse is possible. In this way, HINGE reuses the most

powerful macros first and retains completeness. HINGE's conventional learning module was

made suitable for partial-order planning by the relatively simple method of posting variable

separation constraints, rather than the complex method proposed by Kambhampati and Kedar

(Kambhampati and Kedar, 1991). By virtue of its plan-space planning model, HINGE and

SNLP+EBL are the first macro planners that can solve any problem by reusing available

69

macros, even when those macros must be expanded and interleaved to integrate sub-problem

solutions.

70

IV Addressing the Utility Problem

4.1 Introduction

The utility problem is the possibility that a problem solver which learns and reuses

solutions will perform worse with additional learning. Previous research has focused on some

of the costs associated with reusing plans. In my research, I treat the utility problem using

an eclectic approach, paying attention to both costs and benefits of reusing plans. Chapter

Ill described HINGE and the features of HINGE that promote beneficial reuse such as its

plan-space planning model and its hierarchical search method. This chapter focus only on

utility problem costs. In particular, this chapter describes two methods that strictly contain

the costs of reuse: an efficient retrieval method and a policy of selective reuse. The chapter

begins by analyzing the utility problem and previous planning methods that motivate selective

reuse. Section 4.3 defines selective reuse and an important implication of selective reuse.

Because selective reuse depends on efficiently finding a specific reuse candidate in the library,

Section 4.4 describes the development of a discriminating retrieval method that takes advantage

of complete problem information. Section 4.5 shows that selective reuse limits both search

and the expansion of the search space better than other reuse policies. Section 4.6 shows how

selective reust can be relaxed to solve problems by decomposition using reuse candidates

which are likely to be appropriate and to require no future work.

4.2 Analyzing the Utility Problem

4.2.1 Separate Costs. The which may be separated into these components:

1. the cost of retrieving, from the library, reuse candidates that are likely (or guaranteed)

to be appropriate (i.e., to be on a solution path).

2. the cost of selecting from among the retrieved reuse candidates

3. the cost of doing future work which might arise from trying to reuse the best candidate;

this cost may be further broken down:

71

(a) if the selected reuse candidate is appropriate, there is only the cost of search

required to establish any of the candidate's preconditions that are not established

by existing plan operators; otherwise,

(b) if the selected reuse candidate is inappropriate, there is the cost of search required

to discover that its preconditions cannot all be established plus the cost of finding

and testing an appropriate reuse candidate.

4.2.2 Previous Methods for Containing Costs. As described in Chapter II, selective

learning has been the method of choice for containing the utility problem. Selective learning

limits retrieval cost directly by constraining the size of the library (and therefore, the search

required to find a particular reuse candidate in the library). By limiting the number of reuse

candidates available, selective learning also limits the expansion of the search space to some

extent. However, the primary motivation for selective learning is limiting the retrieval cost.

In the literature, retrieval has been characterized as requiring general search and match-

ing. Because matching and search are supposedly required, the cost of retrieval has been

claimed to grow exponentially with both the size of the learned macros and the number of

them in a library, despite any indexing method used (Minton, 1990). However, these charac-

terizations are not necessarily true. For example, it is possible to find a polynomial algorithm

for retrieving appropriate macros, as shown in Section 4.4.

Chapter II also described case-based methods which address the utility problem. Case-

based planners usually have efficient retrieval methods that do not require a general search

algorithm. Therefore, case-based planners do not depend on selective learning to retrieve a

reuse candidate quickly. To contain the expansion of the search space caused by consider-

ing additional operators, case-based planners typically limit reuse to a single macro which

is modified to solve the current problem. There are three drawbacks associated with this

approach:

1. the retrieved reuse candidate is only heuristically similar to the desired plan; there is no

guarantee of appropriateness,

72

2. allowing only one reuse candidate means that new problems solvable using case-based

planning are those which are similar to previously-solved problems,1 and

3. it is impossible to predict the amount of additional work required of the planner to

modify the reuse candidate so that it is a solution to the current problem.

4.3 Selective Reuse

Considering the costs associated with plan reuse (Section 4.2.1), the best method of

containing costs is to retrieve only appropriate reuse candidates so long as the cost of doing

so is not too high. If the retrieved reuse candidates are all guaranteed to be appropriate, then

selecting one of them costs virtually nothing because the choice is arbitrary; inserting any

one of them into a plan will lead to a solution.2 The future work entailed by inserting an

appropriate operator is the work done by the planner to establish any of its preconditions that

cannot be established by existing plan operators. In contrast, if an inappropriate operator

is inserted into the plan, then its insertion entails both the work of establishing operator

preconditions (until one is found that cannot be established) and the additional work done by

the planner to backtrack and find an appropriate operator. In general, the future work entailed

by inserting either type of reuse candidate cannot be predicted.

If retrieving only appropriate reuse candidates is the best method of containing the costs

of plan reuse, then how can arropriate reuse candidates be identified? Assuming no special

domain knowledge for identifying appropriate reuse candidates, there are only two ways to

identify appropriate reuse candidates. The first way is to test them by inserting them into a

plan and using the planner itself. If inserting a reuse candidate into a plan does not cause

backtracking ditring the search for a solution, then the reuse candidate must have been on a

solution path, i.e., appropriate. Clearly, this test is of no value because it requires finding a

1 Veloso's PRODIGY/ANALOGY allows multiple reuse candidates. However, because it depends on a decompo-
sition method similar to big-chunk-decomposition (Section 3.7.3), PRODIGY/ANALOGY cannot efficiently solve
problems that must be decomposed into same-size chunks. Therefore, in some sense PRODIGY/ANALOGY is also
limited to solving problems that arm similar to problems solved previously.

2()f course selecting me appropriate reuse candidate from a set of them could be based on another criterion
such as execution cost or side-effect prefreice.

73

solution; the appropriateness of a reuse candidate is needed before it is inserted into a plan,

not when the planner solves the problem.

The second way to identify appropriate reuse candidates is to use a description of the

problem solved by the reuse candidate and compare it with the current planning problem. The

reuse candidate solves the current planning problem if

1. the effects of the reuse candidate achieve all problem goals, and

2. the preconditions of the reuse candidate are a subset of the initial state

or, in plan-space terms, if

1. the effects of the reuse candidate can establish the preconditions of final, and

2. all of the preconditions of the reuse candidate can be established by init.

Any reuse candidate that meets these criteria solves the whole problem and is therefore called

a "whole-problem solution." Inserting such a reuse candidate into a plan clearly leads to a

solution, thus such a reuse candidate is appropriate by definition. Because there is no general

method for predicting the appropriateness of reuse candidates that are not whole-problem

solutions, the following result holds:

Synonymous Terms: In the context of a particular planning problem, an
appropriate reuse candidate means the same thing as a whole-problem solution.3

There are two important implications that arise because appropriate reuse candidates are

also whole-problem solutions. First, it becomes quite clear how appropriate reuse candidates

can be retrieved from a library and what information is required for retrieval. Reuse candi-

dates are described by the problem they solve; the initial state is represented by the macro's

preconditions and the problem goals achieved by the macro are represented by its effects.

Retrieving a candidate requires an index that captures macro preconditions and effects and

3 The HINGE planning model assumes that no domain knowledge exists to guarantee the appropriateness of
a reuse candidate. Another planner may not make this assumption, so these two terms may not by synmymous
in the context of this other planmer.

74

this same index must be generated by a new problem which the macro can solve. To generate

the right indexing function, complete information about the new problem is required. That is,

its initial state and problem goals must be completely specified. With these conditions and the

appropriate index, efficient retrieval is possible. Sections 4.3.1 and 4.4 address indexing and

develop an efficient retrieval method for finding only appropriate reuse candidates.

The second implication from the equivalence of "appropriate reuse candidate" and

"whole-problem solution" is that the following simple result holds:

Future Work Required by Appropriate Macros: Inserting an appropriate
reuse candidate (a whole-problem solution) into a plan entails no future planning
work.

The costs associated with the utility problem are contained the most when reuse is

confined to only appropriate reuse candidates. This is the basis of selective reuse.

Selective Reuse: The policy of retrieving and inserting only one appropriate
reuse candidate into a plan.

Clearly, if selective reuse only allows reuse of whole-problem solutions, then it is not inter-

esting when a whole-problem solution does not exist in the library. However, a relaxed form

of selective reuse can be applied to sub-problems which result from decomposing a planning

problem. This relaxed form of selective reuse uses incomplete problem information, but

assumes that the information is complete. The method is described in Section 4.6. Befere

analyzing selective reuse further, it is important to describe the retrieval method which makes

selective reuse a viable method of controlling the utility problem.

43.1 "Impedance Mismatch" in an Index. Part of the difficulty in finding a

discriminating index even with sufficient information is that the problem solver and learner

often have different "views" of the information. These different views lead to a potential

"impedance mismatch" when making the index for a particular concept That is, the index that

the learner uses to store the concept may be quite different from the index that the problem

solver will use to try to retrieve the same concept. This effect is easy to see in macro planners.

A macro often has fewer preconditions than the initial state of a problem that the macro solves

75

(if so, then part of the initial state is not required to establish preconditions in the macro).

Therefore, an impedance mismatch results if the index tries to match the initial state with

preconditions of reuse candidates. Impedance mismatch is a recognized problem in other

EBL systems also (Keller, 1987, Minton, 1990). Minton notes:

"...as traditionally viewed, the operationality criterion does not take into account
how the learned description will be used later to improve the performance [of
the] system, which determines its benefit (Minton, 1990)."

To avoid impedance mismatch in constructing an index, a careful analysis of the domain must

be used to find ways to translate problem descriptions and learned-solution descriptions into

identical indices. In Section 4.4, such an analysis is described for the block-stacking domain.

Given an appropriate index, the polynomial retrieval method described in Section 4.4.3 may

be used.

4.4 Retrieval: An Extended Example

This section presents an extended example that develops an index and polynomial

retrieval method based on selective reuse. Section 4.4.1 describes an indexing scheme for

linear-order retrieval of macro operators that completely solve problems in a constrained

STRIPS block-stacking planning problem. Unlike general search and matching methods, the

indexing and retrieval method does not require an exponential amount of time to find macros

despite the size of the macros or the number learned. This example shows that retrieval does

not require general (exponential) search when complete problem information exists, and only

constrained search is required when incomplete problem information exists.

In Section 4.4.2, the effects ofremoving some of the assumptions in the example problem

are discussed along with the space/time trade-offs that exist. As shown in Section 4.4.3, in

the case that the impedance mismatch cannot be eliminated, a polynomial-time algorithm

may exist for finding a reuse candidate that is guaranteed to be appropriate. In Section 5.3,

empirical results are presented that suggest problem solving performance degrades linearly

with the size of the library in the worst case.

76

r P*

8WNI

process of a macro planner. ,t the beginning of the planning process, the planner has a set of

goals to be achieved and a specification of the initial state. Using this information, a retrieval

index function returns an index that is used to retrieve a set of macro operator schemas (plan

schemas) that might achieve the goals, given the current state. The retrieved macro operator

schemas are tested until an instantiation of one of them solves the problem. If none of the

macro operator schenmas can be used to solve the problem, then the macro-based planner fails

and a solution must be generated from primitive operators. Whenever such a failure occurs,

planning with reuse takes longer than generative planning. On the other hand, if it can be

guaranteed that all retrieved macro operator schemas can be instantiated to solve the problem

(ije., the index is sufficiently discriminating to find appropriate reuse candidates), then no

testing is required, and failure of the retrieval mechanism bears only a small cost. With the

best hashing methods, the worst-case time order of retrieval is 0(n) in the number of stored

macro operator schemas (Horowitz and Sahni, 1990). Therefore, the time complexity of the

best retrieval algorithm is no worse than linear in the number of macro operator schemas.

If the mrxo planner fails, a complete, generative planner produces a plan that achieves

the goals, given the initial state. Whenever a plan is generated, a generalization module creates

77

the macro operator schema by substituting variables for objects and object attribute values.

A storage index function is used to store the new macro operator schema. In order to find

an indexing scheme that overcomes the utility problem, it is necessary to specify the index

functions used to store and retrieve macro operator schemas and show that the retrieval index

allows retrieval of only those schemas that can be instantiated to solve a particular planning

problem. This is demonstrated below with a tightly constrained version of the block-stacking

domain.

In this constrained block-stacking domain, six blocks may be arranged only in the

configurations shown in Figure 29: this will hold for initial, goal, and intermediate states.

Also, the position of stacks on the table is part of the state description. Each of the 11

configurations may be arranged in 6! different ways, so the total number of states for this

world is 7,920. There are 62,726,400 (7,9202) state transitions (7,920 of them "null"

transitions) and an infinite number of plans possible for each state transition. The primitive

operators are defined to perform these transitions in a single step. One more simplifying

assumption is required to find a completely discriminating indexing scheme: the set of goals

provided to the planner specifies the goal state, rather than a set of propositions the goal

state must include. In other words, a problem is described by an initial state and a goal state

rather than an initial state and a set of problem goals. The initial and goal states describe

the planning problem and also describe the "interface characteristics" (I/O) of plans derived

to solve the plaring problem, hence, there will be no impedance mismatch. Similarly, a

generalization of the two states defines a generalized planning problem and also describes the

interface characteristics of a generalized plan for solving it Therefore, the retrieval index

function maps a planning problem into a generalized planning problem index, and the storage

index function returns an index for a generalized planning problem.

Figure 30 (a) shows an example of a transition between a generalized initial state and a

generalized goal state. Figure 30 (b) shows the same transition with a different set of variable

assignments. For space efficiency, the index function should map one transition pattern into

a single index, regardless of the variable names. One way to do so is to label the initial state

78

! UII W! W I F1 WI

Figure 29. Allowed block-stacking configurations and initial state variable labeling
convention.

with variables, using the convention shown in Figure 29. Figure 30 (c) shows the appropriate

transition representation with this convention.

Now the index functions can be specified. For learning, the storage index function maps

a transition between generalized states into two 6x6 arrays whose elements are either empty or

contain the name of a variable representing a block Figure 31 shows, in graphical form, the

resulting index for the macro represented by the transition shown in Figure 30. For planning,

the retrieval index function generalizes the initial and goal states and then applies the storage

index function.

As in many problems, there can be an infinite number of plans possible for each of

the state transitions (albeit, most of them are inefficient). However, for retrieval, only the

generalized interface characteristics are of concern. In the example world, there are only

87, 120 (62, 726, 400/6!) transitions between generalized states because each transition may

be instantiate 6! ways. Thus, generalization saves considerable space (for a small cost

in time) by mapping the given problem to a generalized problem and then instantiating

79

'M.

(.)

(b)

(a)

Figure 30. Alternative variable labeling for block-stacking transitions.MXR
'MV

AINO

M ED

Figure 31. An index for the macro operator schemas.

the retrieved macro operator schemas to produce operators. Furthermore, if a sufficiently

discriminating index is available, there is no cost of testing macro operator schemas for

applicability. When a set of schemas is stored under an index corresponding to a single

transition, the implication of using a sufficiently discriminating index is profound: all the

schemas are retrieved simultaneously and are guaranteed to be appropriate. No testing is

required, selection amongst them can be based upon other criteria (such as execution cost),

and the retrieval of the multiple plans does not add to the cost of reuse.

4.42 Expanding the Blocks World. The previous example used two important

assumptions: relative stack position is meaningful, and the goal state description is completely

80

specified. Relaxing these limitations will allow for more flexible problem solving while still

retaining linear-order retrieval, provided a storage space penalty is accepted.

By making the relative stack position important, the first assumption restricts the al-

lowable block configurations. This assumption provides for a very compact index and avoids

storing a macro operator schema under multiple indices. However, if stack order is not im-

portant, a different approach to indexing is required. A single index cannot accommodate

all permutations of a configuration when there are two or more stacks of the same height.

Therefore, multiple indices are required, leading to a space/time trade-off: either a macro

operator schema must be stored under multiple indices during learning, or multiple indices

must be generated during planning, causing multiple retrievals. Assuming retrieval time is

to be minimized, the best choice is to store macro operator schemas under multiple indices

during learning; with this method, the time for retrieval is unaffected by removing the first

assumption.

The second assumption requires that the planner be provided with a complete goal

(final) state description rather than a set of goals that must be true in the final state. Under

the indexing method described so far, if this assumption were to be relaxed, then retrieval

would require that indices be generated for all possible final states that include the given set

of problem goals. A better approach is to modify the indexing method to use the initial state

and the problem goals when a schema is learned, rather than the initial state and the goal

state. These problem goals become the primary effects of the learned macro operator. A

space cost could be incurred if the problem goals are not minimally specified in the learning

problems (Le., side-effects are included in the problem descriptions), but this has no impact

on retrieval time. The usefulness of these learning situations is questionable, however, since

macro operator schemas are retrieved based upon exact match of the interface characteristics

(generalized initial state and problem goals/primary effects). A discipline of only specifying

the problem goals would prevent storage space growth and provide a better hit-rate on schema

retrieval.

81

4.43 Polynomial-Time Retrieval. A particular macro operator often requires only

a subset of the initial state propositions to satisfy its preconditions. Thus, from a space

standpoint, it is attractive to reduce redundancy and index the macro operator schema on its

preconditions, rather than on every superset of the preconditions that represents an initial state.

This approach, however, produces an impedance mismatch that precludes linear-time retrieval:

a problem description provides complete information, but the macro operator schemas are

stored using only the necessary preconditions under which they were learned. Therefore, a

two-step process is used for retrieval. Indexing is based only on goals that an operator schema

achieves (its primary effects). To retrieve appropriate reuse candidates, possible candidates

are retrieved based on the goals they achieve and then the candidates are tested to see if all

their preconditions can be established by the problem initial state. Only those passing the test

are forwarded to the planner.

When a macro operator schema is learned, the storage index is based only on its primary

effects. For retrieval, the problem goals are used to form the index; therefore, there is no

impedance mismatch and the retrieval time is, at worst, linear with the size of the library. All

schemas that achieve those goals will be retrieved; let the number of retrieved schemas be M.

Each schema will have a set of preconditions; let schema i have Ni preconditic. inally, the

initial state of a problem has L propositions; the set of Ni preconditions may or may not be a

subset of the initial state. When instantiated, a macro operator schema's N, preconditions can

be established if all preconditions are a subset of the L propositions of the initial state. Each

precondition of each schema must be tested against the problem initial state, resulting in a

maximum of Em, L * N, comparisons. Since N, cannot be greater than L for an appropriate

schema, the number of tests is upper-bounded by M * L2. Therefore macro testing requires

time of order O(n 3). Because the hash table lookup requires, at worst, O(M) time, the time

complexity of finding appropriate macro operator schemas is a polynomial of order 0(n 3).

Section 5.3 describes an experiment in which HINGE solves problems by selective

reuse using the O(n3) time retrieval method discussed here. In the experiment the number

of macro operator schema preconditions and the number of initial state propositions are fixed

82

while the number of macro operator schemas increases. The results are consistent with the

analysis presented here: in the worst case, increasing the library size causes a performance

degradation that is linear in the size of the library.

4-5 Analyzing Selective Reuse

There are alternative reuse policies that could be followed in a macro planner. However,

to contain the utility problem, selective reuse (or the relaxed form of selective reuse) is

the best policy because it most strictly limits search and contains search-space expansion.

Furthermore, if reuse candidates are guaranteed to be appropriate (solve the whole problem),

then the planner can consider just one of them, or, by extension, if reuse candidates are likely

to be appropriate, then reuse will probably succeed if the planner limits consideration to a

few of them. By considering only one or a few of the reuse candidates, the size of the search

space is constrained further. These are the fundamental ideas of selective reuse, a reuse policy

designed to contain the utility problem in macro planning.

Alternatives to reuse candidates that solve the whole problem are:

1. macros whose effects can achieve all problem goals but whose preconditions cannot all

be established by existing plan operators,

2. macros whose preconditions can all be established by existing plan operators but whose

effects cannot achieve all problem goals, and

3. macros whose preconditions cannot all be established by existing plaxt operators and

whose effects cannot not achieve all problem goals.

Considering any or all of these reuse candidates in addition to those that solve the whole

problem expands the search space being traversed by the planner because there are more

choices available. Furthermore, all three alternatives require additional search, while reuse

candidates that solve the whole problem do not. Inserting a macro of the first type adds

goals for precondition establishment to the set of outstanding goals being considered by the

planner. These new goals will also have to be achieved through search, and the amount of

83

search necessary to achieve them is unknown and unconstrained. Inserting a macro of the

second type means that the choice may have to be retracted, resulting in backtracking, lost

search effort, and additional search. For example, if stack(AB) were a macro for Sussman's

Anomaly (see Figure 15 on page 53 and Figure 7 on page 20), inserting it would not lead to

a solution and backtracking would result. Inserting a macro of the third type would require

additional search for both reasons. Because considering any of these alternatives in addition

to whole-problem solutions expands the search space more and causes additional search, any

policy that considers them is not as useful for limiting the utility problem as selective reuse.

4.6 Solving Problems Incrementally with Relaxed Selective Reuse

Section 4.4 described an example that depended on finding a whole-problem solution

(a macro that is guaranteed to be appropriate and also solves the whole problem). Often, a

whole-problem solution does not exist in the library of reuse candidates. if so, reuse may still

be possible by decomposing the problem and finding a set of appropriate macros that solve

pieces of it. To test for macro appropriateness, however, the planner itself must generally be

used to solve the problem, making the test as expensive as solving the planning problem itself.

A less-expensive strategy is to find macros that are very likely to be appropriate. For example,

perhaps it is possible to identify parts of the problem which are likely to be independent. If

so, then macros which are used to solve these subproblems will probably not be clobberers

of each other's establishments, and using them is more likely to result in a solution. Under

these assumptions, the macros found using the retrieval method presented in Section 4.4.3 are

likely, rather than guaranteed, to be appropriate because sub-problem solutions may fail to

integrate. This is the basis of the relaxed form of selective reuse.

Selective Reuse (relaxed form): The policy of considering only a few reuse
candidates which are appropriate for solving sub-problems of a problem for which
no whole-problem solution can be found.

Solving a sub-problem increases the number of propositions that possibly match macro

operator preconditions when testing for applicability, but retrieval still requires 0(n 3) time.

As described in Section 4.4.3, each learned macro operator schema is stored using an index

84

based only on its primary effects. There is no change in library retrieval when hashing is

used: the problem goals are used to form the index; therefore, there is no impedance mismatch

and the retrieval time is, at worst, linear with the size of the library. As before, all schemas

that achieve those goals will be retrieved; let the number of retrieved schemas be M. Each

schema will have a set of preconditions; let schema i have Ni preconditions. As before,

the initial state has L propositions, the set of which may or may not be a superset of the N,

preconditions. However, because other plan operators may be able to establish the macro's

preconditions, the effects of these operators must be added to the initial state propositions

when testing to see if the macro preconditions can be established without additional work.

Suppose there are K effects corresponding to other plan operators that may be able to establish

the macro's preconditions. When instantiated, a macro operator schema's N, pre,:onditions

can be established if they are a subset of the L propositions of the initial state unioned with the

K effects of possibly-before operators. Suppose there are J of these propositions and effects,

where J > L always. Substituting J for L in the argument made in Section 4.4.3 shows

that the time complexity of this approach to macro operator schema retrieval is, at worst, a

procedure whose time complexity is O(n 3), as before.

4.7 The Impact of Efficient Retrieval and Selective Reuse on the Utility Problem

Efficient retrieval and selective reuse are effective strategies for strictly limiting per-

formance degradation that possibly accompanies reuse, but these methods do not eliminate

the utility problem.4 Whenever an appropriate reuse candidate does not exist, the effort spent

looking for an appropriate candidate will be wasted and macro planning performance will be

worse than generative planning. Efficient retrieval and a policy of selective reuse are designed

to minimize the effort spent looking for an appropriate reuse candidate. These methods and

the methods that promote beneficial reuse discussed in Chapter IMI combine to contain the

utility problem and lessen its importance.

4The same is true for selective leaming and case-based planning-these methods do not eliminate the utility
-wblem eith.

85

4.8 Summary

After analyzing the utility problem, this chapter described two methods for containing

the utility problem in macro planning. First, it introduced the policy of selective reuse to control

search and contain the expansion of the search space caused by considering more operators.

Selective reuse causes the planner to consider only whole-problem solutions (appropriate

macros) or, in its relaxed form, whole-problem solutions to sub-problems (likely-appropriate

macros). Second, it presented a generally-applicable retrieval method for macro planning

that finds an appropriate or likely-appropriate reuse candidate in O(n3) time when complete

problem information exists. The performance of this retrieval method is independent of the
size of the macros in the library and varies only linearly with the size of the library. Selective

reuse was shown to better contain search and search-space expansion better than alternative

reuse strategies. A relaxed form of selective reuse was defined to allow reuse when no whole-

problem solutions exist in the library of reuse candidates. Using these methods, HINGE

effectively contains the utility problem without selective learning. The next chapter presents

experimental results that are consistent with analytica' irguments made in this chapter.

86

ILI

V Empirical Results

5.1 Introduction

In Chapters ll[and IV established the computational advantages of the planning, re-

trieval, and reuse approaches developed for containing the utility problem. This chapter

describes the computational results observed when these approaches were implemented in

HINGE. In particular, this chapter concentrates on HINGE's performance when retrieving

reuse candidates from large libraries, when using an alternative reuse policy, and when learn-

ing from random problems.

5.2 The Domain and Method Used

Given the operator representation used in this research and defined in Section 2.2.2,

any domain that can be represented by HINGE operators could have been chosen to gain

computational experience with HINGE. I chose to use the block-stacking domain for this

purpose because block-stacking problems are familiar to many researchers and are simple to

understand. The block-stacking domain is described in (Norvig, 1992:136-142).

To avoid bias in choosing a test set, I used only randomly-generated problems. I

developed a random-problem generator that works by producing two states, using LISP's

pseudo-random number generator to decide the placement of each block in each state. The

random-problem generator selects the simpler state (the one with the greater number of smaller

block stacks) as the problem's initial state. The problem goals are produced by randomly

selecting propositions from the remaining state, which represents one of the possibly many

goal states.

I measured performance in terms of the time HINGE required to find a plan under

different conditions for 22 randomly-generated 6-block block-stacking problems. Planning

time is reported either for each individual problem or as a mean planning time for an problems

in the test set. A Sun IPC was used for some measurements while others were made using a Sun

SPARCstation 10. Therefore, absolute planning times vary because of different processing

87

power of the different computers used. However, direct comparisons were only made between

problem runs on the same processor.

5.3 The Effect of Large Libraries

To examine the worst-case performance of HINGE's retrieval method as a function

of the size of the library, HINGE was repeatedly trained on the test set of 22 problems and

performance with reuse was measured as a function of increasing library size. The polynomial

retrieval method described in Section 4.4 was used at all times. As described in Chapter IV,

this retrieval method uses a hash table; in the worst case, all hash table entries are stored in a

list indexed by a single hash key. To retrieve a hash entry in the worst case, each element of

the list must be examined, an operation that requires time that is a linear function of the length

of the list By repeatedly learning solutions to the same set of problems, HINGE's worst-case

library is built and HINGE's worst-case retrieval performance can be measured.

During this measurement, HINGE was set to retrieve all appropriate reuse candidates,

but only one of them of them was used'; under these conditions, any increase in planning time

is due to the retrieval method finding additional reuse candidates. Thus, the retrieval-method

performance was measured indirectly by measuring planning time.

HINGE was initially set to learn macros, but not allowed to reuse them. Instead,

HINGE solved each problem in the test set by generative planning using only the three

primitive operator schemas shown in Figure 15 on page 53. After solving the 22 problems,

the operator schema library contained 28 macro operator schemas2 as well as the original 3
primitive operator schemas. Next, HINGE was set to reuse these macro operator schemas,

but not to learn new ones. Planning times were found for the test set problems while HINGE

used this small library.

'Only oae mess candidate is rqapired to solve a pobkm if the candidate is appropriate because it must be a
whoablem solhtim2 ¶The gera .lizes ad stas all signifcant sibproblems, so each problem resulted in leamin a variable
aumbeof da co operator sclhemas.

88

To see the effect of increasing the library size on retrieval performance, the learning filter

that normally prevents redundant macro operator schemas from being stored in the library was

disabled, and the procedure described in the paragraph above was repeated 29 times. After

each iteration, the same 28 macros were learned and stored in the library using the same set

of indices derived on previous iterations. Thus, after five iterations, for example, a particular

macro index pointed to at least 5 macro operator schemas.3 Normally, HINGE does not learn

a particular plan more than once.

Figure 32 shows the planning time required for generative planning to solve the 22

problems as well as the corresponding solution times for planning with reuse using four

different sizes of the macro operator schema library. Data points that are associated with a

particular set of conditions are connected by a line segments on the graphs.

For most problems, the planning time increases as the library grows because the retrieval

method must test additional reuse candidates. The planning times for problems 11 and 12

did not vary as the library grew because the solutions for these problems were not learned.

These two problems had phantom goals which required planning effort to assure, but the

problem solutions did not involve multiple, related, concrete operators. (See Section 3.8.2 for

a description of the filters used in HINGE's learning element.) As shown in Figure 32, the

increase in planning time caused by retrieval from larger libraries varies with the problem.

However, for each problem, the time required to plan with reuse is proportional to the size of

the macro operator schema library. Figure 33 shows the increase in the mean planning time as

a function of library size for each of thirty iterations. Because the library size was increased in

the worst way, these results illustrate that, in the worst case and for the test set used, retrieval

required time that is linear in the size of the library.

3 A pfitola index might point to more than 5 maro opemtor schemas becuse thde is based only on
opemta sdhema effects. Some of the 22 problem rmt in learning maczo operator schemas that have the same
efi•e and indices. but diffemat pwconMons.

89

ConywU@M W Phnft Tuns fr DenMe Lbrary Sias

i6 HINGE whout Rom .--o-
Rem. 28 mero edshema -f-t

Ruse. 280 maro s0o4einu -m--
Reuse. 560 nmcro eduma lb ----

14 R~iuPe, 840 mefro ediemac lb .,*-

12

10

0 5 10 15 20 25
Problm Number (r)eMsofted on genr.uve pumng time)

Figure 32. Comparative planning times with reuse at four library sizes.

ReuanwPerk o vt tlhbrary S

3.6

3A

3.2

3

A 238

2.6

2.

j 221
2

1.8

1.6

1 A
0 100 200 300 400 W 00 800 700 800 900

Number of Mer Sdosn I Lbrwy

Figure 33. Average planning times with reuse at thirty library sizes

90

According to the theoretical performance derived in Section 4.4, HINGE's retrieval

method is, at worst, linear in the size of the library. The empirical results presented in this

section is consistent with the derived theory.

5.4 Selective Reuse vs. Macros with Abstract Establishers

As discussed in Section 4.5, selective reuse reduces search and limits expansion of

the search space expansion better than less selective reuse policies. One example of a less

selective reuse policy is a policy that considers reductions whose operator preconditions cannot

all be established by existing plan operators. Such preconditions must be established by an

abstract operator in the reduction, and the abstract operator represents future work required

of the planner. Performance data were collected when planning with reuse and allowing

different numbers of abstract-operator-established preconditions. After training on the test set

of 22 randomly-generated problems, HINGE was set to collect planning time data when 0, 1,

2, 3, and 4 abstract-operator-established preconditions were allowed in reduction operators.

Selective reuse corresponds to allowing 0 abstract-operator-established preconditions.

Figure 34 shows that the average planning time for problems in the test set increased

as the allowed number of abstract-operator-established preconditions was increased from 0

to 3. The planning time did not increase when the number of abstract-operator-established

preconditions was increased from 3 to 4 because, for the test set used, no additional reuse

candidates were considered as a result of this increase.

As described in Section 4.5, selective reuse is better than any of the three alternative reuse

policies at limiting the expansion of the search space and search in the space. In particular,

selective reuse reduces search more than a policy that considers reductions which include

abstract operators because the latter policy requires additional planning work to establish

preconditions. The results shown in Figure 34 are compatible with the analysis presented in

Section 4.5.

91

Pedonnance Efe of oAn Ablct MoaOpeaor Es mts
42

4

3.6

3.6

3 A.4

3 2IsI
-C 2.8

2.6

2.4

-0.5 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
Naibwr oi AofMOW. OPeaor E@uMW AMowed

Figure 34. Performance as a function of the allowed number of new operator preconditions
which cannot be established by existing plan operators.

55 Learning from Random Problems

A tenet of selective learning is that the utility problem makes non-selective learning

on random problems a disastrous course of action. However, HINGE's efficient retrieval

and selective reuse policy contain the costs associated with the utility problem and lessen

the impact of having learned plans that are not useful for the current planning problem.

Furthermore, HINGE's planning model and hierarchical search through successively finer

decompositions allows flexible insertion of simple plans that may be learned from randomly

generated problems.

To explore non-selective learning in HINGE 19 sets of 10 randomly-generated problems

were solved and their solutions learned. After learning solutions for each set of randomly-

generated problems, timing data were collected for planning with reuse on the 22 problems of

the test set. Figure 35 shows that under these conditions, no problem in the test set required a

great deal of extra time to solve.

92

fMMMM.

Res in HINGE-leenfing from 190 random problems (8810)
7 1

a Bafoe nm'mg (HINGE wihou reuse) [2. oonde, avera -
Aftunoer' 40 er Random ProblWms p15 seconds, avera ---

After bn k8 Pandom Prob0m [2.15 seconds, averg. 'u
After Ionmtfg 120 Randmn Problems .04 secon0ds, a•v "-

5oAft, 190 Random Prblems •.10 , ene.ond• B,

2

0-
0 5 10 15 20 25

Problem Mimber rblsma sorbted on goaersve execition times)

Figure 35. Performance improvement with reuse and different amounts of learning
opportunities.

HINGE is designed to control the utility problem. HINGE's attributes have been shown

analytically to contain the specific costs of the utility problem or improve the likelihood of

reuse and its accompanying benefit. Allowing HINGE to learn 190 random problems did not

drastically impact the performance of any one problem in the test set, a result that is in accord

with the previous analysis of HINGE's features.

93

VI. Conclusions and Recommendations

6.1 Conclusions

This research describes a macro planning model and implementation designed to contain

the utility problem. The utility problem is the possibility that the costs of reuse sometimes

exceed its benefit. In this research, containing the utility problem depends on improving

the probability of reuse and strictly limiting the costs that contribute to the utility problem.

Because HINGE is based on a plan-space planning model, it can solve a wider variety

of planning problems with reuse than state-space macro planners can. Furthermore, unlike

typical case-based planners, HINGE and other macro planners are more flexible in terms of the

number and granularity of plans that are reused. HINGE has a unique method of hierarchical

search for reuse candidates which is supported by decomposition methods and increases the

probability of reuse. To constrain costs which contribute to the utility problem, an efficient

retrieval method was developed to reduce the retrieval cost associated with the utility problem.

By design, this retrieval method requires time that varies linearly with three parameters: the

number of reuse candidates in a library, the number of preconditions for macros resulting

from retrieval of a reuse candidate, and the number of propositions in the initial state. A

policy of selective reuse was developed to reduce search and limit the search-space expansion

caused by considering reuse candidates in addition to primitive operators. Flexible macro

insertion, hierarchical search providing multiple opportunities for reuse, efficient retrieval,

and selective reuse combine to improve performance in HINGE. Together, these methods

lessen the impact of the utility problem in macro planning without requiring selective learning

and its characteristic potential for ignoring a plan with future value.

62 Specific Contributions

The novel planning ideas and contributions of this research are:

1. A model of planning and reuse that explicitly represents features of desirable macro

operators and supports more flexible insertion of macro operators into the developing

94

plan. In the planning model I developed, abstract operators represent goals which are

used to index macro operators that achieve them. This ability to represent goals which

should be achieved simultaneously by a macro operator is extremely useful for search

control. When a good macro operator is retrieved, HINGE's plan-space planning model

allows it to be inserted anywhere in the plan. This feature allows reuse that is precluded

by state-space planning models and case-based planning models.

2. A unique hierarchically-structured search control that encourages subproblem learning

and efficient reuse while ensuring completeness. HINGE searches for the most pow-

erful reuse candidates first, using a hierarchically-structured search mechanism where

abstraction levels are based on the number of goals that HINGE attempts to solve si-

multaneously. This hierarchical search is supported by several decomposition methods

that allow abstract operator reduction when no appropriate or likely-appropriate reuse

candidate can be found. HINGE does not differentiate between macros and primitive

operators. The effect of these choices during planning is to facilitate opportunistic

reuse of whole-problem solutions and flexible insertion of subproblem solutions when

decomposition is necessary. If reuse fails, HINGE solves the problem using only prim-

itive operators and a complete search strategy, meaning that HINGE always finds a

solution to a planning problem if a solution exists. When learning, any sub-parts of the

hierarchical search tree that correspond to useful knowledge are learned by HINGE's

learning component.

3. Apolynomial-orderprocedurefor retrieving only applicable macros, despite their size or

number. An important result of this research is the realization that, if complete problem

information exists, it is possible to develop a discriminating index which can be used

to efficiently retrieve only appropriate concepts learned by EBL (or any other learning

technique), despite the size or number of the concepts learned. If a discriminating

index is used and a whole-problem solution exists in the library of learned concepts,

then retrieval costs that contribute to the utility problem can be less than the cost of

general search and matching. For HINGE, this search requires 0(n 3) time, while

95

the search corresponding to the planning itself requires exponential-order time. If no

whole-problem solution exists in the library, these same results apply to sub-problem

solutions except that the retrieved solutions are likely, rather than guaranteed, to be

appropriate.

4. A policy of selective reuse that limits the number of macros considered and restricts the

future work they entail. If macros that do not solvt the whole problem are considered,

the search space is expanded more than if only whole-problem solutions are considered.

Whole problem solutions require no additional search, while the alternatives require

an unpredictable amount of search. Furthermore, if multiple whole-problem solutions

exist, there is no need to consider more than one of them, or, by extension, if multiple

reuse candidates which are likely to be whole-problem solutions exist, then considering

only one or a few of them is likely to lead to a solution. Limiting the number of reuse

candidates considered is an effective method of limiting the search space. Therefore,

in selective reuse, just one whole-problem solution is considered, or if appropriateness

cannot be guaranteed, then a relaxed form of selective reuse only considers a few reuse

candidates that are likely to be appropriate (for sub-problems). For domain-independent

planning, any other policy re-introduces costs associated with the utility problem.

63 Recommended Future Work

There are three interesting extensions of this research, all involving search control The

first extension involves inserting partial domain knowledge using abstract operators. The

second idea is to find new ways to use the library as a source of knowledge for finding

decompositions. The third idea is to focus attention in planning by encapsulating parts of the

plan when the details of those parts are not likely to be useful for establishing preconditions

of new operators.

Abstract operators introduced in Chapter III provide a means for introducing partial

domain knowledge into a plan when it is available. The method for doing so is to add known

preconditions and effects to abstract operators. When preconditions are added to abstract

96

operators, these preconditions are established sooner during planning than they are when

they only appear in the reduction of the abstract operator. Known effects may also be added

to identify known side-effects that accompany the goals represented by a HINGE abstract

operator. When known effects are added to an abstract operator, these effects may be used

in establishments sooner or may give rise to additional ordering constraints sooner than if the

effects do not appear until the abstract operator is reduced.

Using the library as a source of knowledge for finding decompositions appears to be

fruitful, but more research is required. New indexing methods are potentially important for

using the library in this way. More advanced techniques for learning appropriate decomposi-

tions from past problem solving are possible; these techniques probably require a redefinition

of the library contents. Either of these extensions can co-exist with HINGE's current library

and retrieval procedures.

Planning requires O(an) time for a plan of n operators (Bylander, 1991). If the number

(and complexity) of operators in a plan can be reduced on-the-fly, planning can be more

efficient. One way to reduce the number and complexity of operators in a plan is to encapsulate

part of the plan in a macro operator and to replace that part with the macro. This encapsulation

approach is effective when establishments for preconditions of new operators can be found in

the macro effects or in the effects of other plan operators, but do not depend on the primitive

operators encapsulated by the macro. The approach is likely to be effective when the part

of the plan chosen for encapsulation is likely to be independent from the other parts of the

plan. The complexity of macros that arise from encapsulation, in terms of the number of

preconditions and effects, is sometimes much greater than for other operators, but in the case

that many establishments are made internally, macro complexity differs little from that of other

operators. Therefore, pieces of the developing plan that are likely to be independent and have

many internal establishments are good candidates for replacement with a macro. It is worth

mentioning that a particular operator, having failed to find establishments, might view such a

macro in its expanded form to try to find an establishment, but this does not mean that other

97

operators need to do so. Encapsulation of parts of the plan with macros appears promising as

a method of focusing attention during generative planning.

98

References

Altenman, 1986. Richard Alterman. An Adaptive Planner. In Proceedings of the National
Conference on Artificial Intelligence, pages 65-69, 1986.

Barrett and Weld, 1991. Anthony Barrett and Daniel Weld. Partialorderplanning: Evaluating
possible efficiency gains. Technical report, University of Washington, 1991.

Barrett et al., 1991. Anthony Barrett, Steve Soderland, and Daniel Weld. The Effect of Step-
Order Representations on Planning. Technical report, University of Washington, 1991.

Brown, 1990. Frank Markham Brown. Boolean Reasoning: The Logic of Boolean Equations.
Kluwer Academic Publishers, Boston, 1990.

Bylander, 1991. Tom Bylander. Complexity Results for Planning. In Proceedings of the
Twelvth International Joint Conference on Artificial Intelligence, pages 274-279. Morgan
Kaufmann, 1991.

Bylander, 1992. Tom Bylander. Complexity Results for Extended Planning. In James A.
Hendler, editor, Proceedings of the First International Conference on Artificial Intelligence
Planning Systems, pages 20-27. Morgan Kaufmann, 1992.

Carbonell, 1983. Jaime G. Carbonell. Learning by Analogy: Formulating and Generalizing
Plans from Past Experience. In Ryszard S. Michalski, Jaime G. Carbonell, and Tom M.
Mitchell, editors, Machine Learning. Tioga Publishing Company, Palo Alto, CA, 1983.

Chapman, 1987. David Chapman. Planning for Conjunctive Goals. Artificial Intelligence,
32, pages 333-377, 1987.

Cheng and Irani, 1991. Jie Cheng and Keki B. Irani. Ordering Problem Subgoals. In Pro-
ceedings of the National Conference on Artificial Intelligence, pages 931-936. Morgan
Kaufmann, 1991.

Cook, 1990. Diane J. Cook. Analogical Planning. In Proceedings of the Workshop on Inno-
vative Approaches to Planning, Scheduling, and Control, pages 22-27. Morgan Kaufmann,
1990.

Currie and Tate, 1991. Ken Currie and Austin Tate. O-Plan: the open planning architecture.
Artificial Intelligence, 52, pages 49-86, 1991.

Day, 1992. David S. Day. Acquiring Search Heuristics Automatically for Constraint-based
Planning and Scheduling. In James A. Hendler, editor, Proceedings of the First Inter-
national Conference on Artificial Intelligence Planning Systems, pages 45-51. Morgan
Kauffmann, 1992.

Dejong and Mooney, 1986. Gerald Dejong and Raymond Mooney. Explanation-Based
Learning: An Alternate View. Machine Learning, 1, pages 145-176, 1986.

Drummond and Currie, 1991. Mark Drummond and Ken Currie. Goal Ordering in Partially
Ordered Plans. In Proceedings of the National Conference on Artificial Intelligence, pages
960-965. Morgan Kaufminnn, 1991.

99

Ellman, 1989. Thomas Ellinan. Explanation-Based Learning: A Survey of Programs and

Perspectives. ACM Computing Surveys, 21, pages 163-221, 1989.

Fikes and Nilsson, 1971. Richard E. Fikes and Nils Nilsson. STRIPS: A New Approach to
the Application of Theorem Proving to Problem Solving. Artificial Intelligence, 5, pages
189-208, 1971.

Fikes et al., 1972. Richard E. Fikes, P. E. Hart, and Nils J. Nilsson. Learning and executing
generalized robot plans. Artificial Intelligence, 3, pages 251-288, 1972.

Greiner, 1989. Russell Greiner. Towards A Formal Analysis of EBL. In Proceedings of the
Sixth International Workshop on Machine Learning, pages 450-453, Cornell University,
NY, June 1989.

Gries, 1985. David Gries. The Science of Programming. The MIT Press, Cambridge, MA,
1985.

Hammond and Converse, 1991. Kristian J. Hammond and Timothy M. Converse. Stabilizing
environments to facilitate planning and activity: An engineering argument In Proceedings
of the National Conference on Artificial Intelligence, pages 787-793. Morgan Kaufmann,
1991.

Hammond, 1986. Kristian J. Hammond. CHEF: A Model of Case-Based Planning. In Pro-
ceedings of the National Conference on Artificial Intelligencc ,es 261-271. Morgan
Kaufmann, 1986.

Hammond, 1989. Kristian J. Hammond. Case-Based Planning: Viewing Planning as a
Memory Task. Academic Press, Inc., New York, 1989.

Hammond, 1990. Kristian J. Hammond. Explaining and Repairing Plans That Fail. Artificial
Intelligence, 45, pages 173-228, 1990.

Hamks and Weld, 1992. Steve Hanks and Daniel S. Weld. Systematic Adaptation for Case-
Based Planning. In James A. Hendler, editor, Proceedings of the First International

Conference on Artificial Intelligence Planning Systems, pages 96-105. Morgan Kaufmann,
1992.

Horowitz and Salmi, 1990. Ellis Horowitz and Sartaj Sahni. Fundamentals of Data Structures
in Pascal. Computer Science Press, New York, 1990.

Joslin and Roach, 1990. David Joslin and John Roach. A Theoretical Analysis of
Conjunctive-Goal problems. Artificial Intelligence, 41, pages 97-106, 1990.

Kambhampati and Chen, 1993. Subbarao Kambhampati and Jengchin Chen. Relative Utility
of EBG based Plan Reuse in Partial Ordering vs. Total Ordering Planning. In Proceedings
of the National Conference on Artificial Intelligence, pages 514-519. Morgan Kaufmann,
1993.

Kambhampai and Hendler, 1992. Subbarao Kambhampati and James A. Hendler. A
validation-strucht-based theory of plan modification and reuse. Artificial Intelligence,

55, pages 193-258, 1992.

100

Kambhampati and Kedar, 1991. Subbarao Kambhampati and Smadar Kedar. Explanation-
Based Generalization of Partially Ordered Plans. In Proceedings of the National Conference
on Artificial Intelligence, pages 679-685. Morgan Kaufmann, 1991.

Kambhampati, 1990. Subbarao Kambhampati Mapping and Retrieval During Plan Reuse:
A Validation Structure Based Approach. In Proceedings of the National Conference on
Artificial Intelligence, pages 170-175. Morgan Kaufmann, 1990.

Kambhampati, 1992. Subbarao Kambhampati. Characterizing Multi-Contributor Causal
Structures for Planning. In James Hendler, editor, Proceedings of the First International
Conference on Artificial Intelligence Planning Systems, pages 116-125. Morgan Kaufmann,
1992.

Kambhampati, 1993. Subbarao Kambhampati On the Utility of Systematicity: Unde
ing Tradeoffs between Redundancy and Commitment in Partial-order Planning. L
ceedings of the Thirteenth International Joint Conference on Artificial Intelligence, pages
1380-1385. Morgan Kaufmann, 1993.

Keller, 1987. R. M. Keller. Defining operationality for explanation-based learning. In Pro-
ceedings of the National Conference on Artificial Intelligence, pages 482-487. Morgan
Kaufmann, 1987.

Knoblock et at., 1991a. Craig A. Knoblock, Steven Minton, and Oren Etzioni. Integrating
Abstraction and Explanation-Based Learning in PRODIGY. In Proceedings ofthe National

Conference on Artificial Intelligence, pages 541-546. Morgan Kaufmann, 1991.

Knoblock eta!., 1991b. Craig A. Knoblock, Josh D. Tenenberg, and Qiang Yang. Character-
izing Abstraction Hierarchies for Planning. In Proceedings of the National Conference on
Artificial Intelligence, pages 692-697. Morgan Kaufinann, 1991.

Knoblock, 1991a. Craig A. Knoblock Learning Abstraction Hierarchies for Problem Solv-
ing. In Proceedings of the National Conference on Artificial Intelligence, pages 923-928.
Morgan Kaufmann, 1991.

Knoblock, 1991b. Craig A. Knoblock. Search Reduction in Hierarchical Problem Solving. In
Proceedings of the National Conference on Artificial Intelligence, pages 686-691. Morgan
Kaufmann, 1991.

Kolodner etal., 1985. Janet L. Kolodner, Robert L Simpson, and Katia Sycara-Cyranski.
A process model of cased-based reasoning in problem solving. In Proceedings of the
Ninth International Joint Conference on Artificial Intelligence, pages 284-290. Morgan
Kaufmann, 1985.

Kolodner, 1983. Janet L. Kolodner. Recontructive Memory: A Computer Model Cognitive
Science, 7, pages 281-328, 1983.

Korf, 1983. Richard E. Korf. Operator Decomposability: A New Type of Problem Struc-
ture. In Proceedings of the National Conference on Artificial Intelligence, pages 206-209.
Morgan Kaukfmann, 1983.

101

Korf, 1987. Richard E. Korf. Planning as Search: A Quantitative Approach. Artificial

Intelligence, 33, pages 65-85, 1987.

Koton, 1988. Phyllis A. Koton. Using Experience in Learning and Problem Solving. PhD
thesis, Massachusetts Institute of Technology, 1988.

Leake, 1991. David B. Leake. An Indexing Vocabulary for Case-Based Explanation. In
Proceedings of the National Conference on Artificial Intelligence, pages 10-16. Morgan
Kaufmann, 1991.

Markovitch and Scott, 1989. Shaul Markovitch and Paul D. Scott. Information Filters and
their Implementation in the SYLLOG System. In Proceedings of the Sixth International
Workshop on Machine Learning, pages 404-407, Cornell University, NY, June 1989.

McAllester and Rosenblitt, 1991. David McAllester and David Rosenblitt. Systematic Non-
linear Planning. In Proceedings of the National Conference on Artificial Intelligence, pages
634-639. Morgan Kaufmann, 1991.

McCartney, 1992. Robert McCartney. Case-based planning meets the frame problem (case-
based planning from the classical perspective). In James A. Headier, editor, Proceedings
of the First International Conference on Artificial Intelligence Planning Systems, pages
172-178. Morgan Kaufmann, 1992.

Minton, 1985. Steven Minton. Selectively Generalizing Plans for Problem solving. In Pro-
ceedings of the International Joint Conference on Artificial Intelligence, pages 596-602.
Morgan Kaufmann, 1985.

Minton, 1990. Steven Minton. Quantitative Results Concerning the Utility of Explanation-
Based Learning. Artificial Intelligence, 42, pages 363-391, 1990.

Newell and Simon, 1963. Alan Newell and Herbert A. Simon. GPS, a program that simulates
human thought In E. Feigenbaum and J. Feldman, editors, Computers and Thought, pages
279-293. McGraw-Hill, New York, 1963.

Norvig. 1992. Peter Norvig. Paradigms of Artificial Intelligence Programming. Morgan
Kaufmann, San Mateo CA, 1992.

Pollack, 1992. Martha E. Pollack. The uses of plans. Artificial Intelligence, 57, pages 43-68,
1992.

Redmond, 1990. Michael Redmond. Distributed Cases for Case-Based Reasoning; Facihl-
tating Use of Multiple Cases. In Proceedings of the National Conference on Artificial
Intelligence, pages 304-309. Morgan Kaufmann, 1990.

Rich and Knight, 1991. Elaine Rich and Kevin Knight Artificial Intelligence. mh, New
York, second edition, 1991.

Rissland et al., 1993. Edwina L Rissland, David B. Skalak, and M. Timur Friedman. Case
Retrieval through Multiple Indexing and Heuristic Search. In Proceedings of the Thir-
teenth International Joint Conference on Artificial Intelligence, pages 902-908. Morgan
Kaufmann, 1993.

102

Rosenbloom et al., 1991. Paul S. Rosenbloom, John E. Laird, Allen Newell, and Robert
McCarL A preliminary analysis of the Soar architecture as a basis for general intelligence.
Artificial Intelligence, 47, pages 289-325, 1991.

Sacerdoti, 1975. Earl D. Sacerdoti. Planning in a Hierarchy of Abstraction Spaces. Artificial
Intelligence, 5, pages 115-135, 1975.

Schank, 1977. R. C. Schank. Dynamic Memory: A Theory of Reminding and Learning in
Computers and People. Cambridge University Press, New York, 1977.

Simmons, 1992. Reid G. Simmons. The roles of associational and causal reasoning in problem
solving. Artificial Intelligence, 53, pages 159-207, 1992.

Simoudis and Miller, 1990. Evangelos Simoudis and James Miller. Validated Retrieval in
Case-Based Reasoning. In Proceedings of the National Conference on Artificial Intelli-
gence, pages 310-315. Morgan Kaufmann, 1990.

Tate, 1977. Austin Tat. Generating project networks. In Proceedings of the International
Joint Conference on Artificial Intelligence, pages 888-893. Morgan Kaufmann, 1977.

Thagard et at., 1990. Paul Thagard, Keith J. Holyoak Greg Nelson, and David Gochfeld.
Analog Retrieval by Constraint Satisfaction. Artificial Intelligence, 46, pages 259-310,
1990.

Veloso et at., 1990. Manuala M. Veloso, M. Alicia Perez, and Jaime G. Carbonell. Non-
linear Planing with Parallel Resource Allocation. In DARPA Workshop on Innovative
Approaches to Planning, Scheduling and Control, pages 207-212. Morgan Kaufmann,
1990.

Veloso, 1992. Manuala M. Veloso. Learning by Analogical Reasoning in General Problem
Solving. PhD thesis, Carnegie-Mellon University, 1992.

Wilkins, 1988. David E. W'lkins. Practical Planning: Extending the Classical Al Planning
Paradigm. Morgan Kaufmann, San Mateo, CA. 1988.

Woods, 1991. Steven G. Woods. An Implementatio and Evaluation of a Hierarchical Non-
linear Planner. Master's thesis, University of Waterloo, 1991.

Yamanura and Kobayashi, 1991. Masayuki Yamamura and Sigenobu Kobayashi. An Aug-
mented EBL and its Applications to the Utility Problem. In Proceedings of the Twelvth
International Joint Conference on Artificial Intelligence, pages 623-629. Morgan Kauf-
manm, 1991.

Yang and Tenenberg, 1990. Qiang Yang and Josh Tenenberg. ABTWEAK: Abstracting a
Nonliear, Least Commitment Planner. In Proceedings of the National Conference on
Artficial Intelligence, pages 204-209. Morgan Kaufmann, 1990.

103

Vita

Captain Douglas E. Dyer was born on 24 September, 1959 in Ann Arbor, Michigan.

He graduated from Blacksburg High School in Blacksburg, Virginia in 1977 and attended the

Virginia Polytechnic Institute and State University where he received a Bachelor of Science

Degree in Chemical Engineering and Biochemistry in 1984. Upon graduation, he was accepted

into the Air Force Undergraduate Engineering Conversion Program, received his commission

from Officer Training School and went to Louisiana Tech University to receive his Bachelor

of Science Degree in Electrical Engineering. His first assignment was to Rome Laboratory at

Griffiss AFB, NY, where he served as Computer Engineer in artificial intelligence research.

In 1990, he was awarded the Masters of Science Degree in Computer Science from the

State University of New York Institute of Technology at Utica, and in 1991 he entered the

in-residence Ph.D. program at the Air Force Institute of Technology (AFIT). His doctoral

research focuses on improving efficiency of automatic planning systems through effective

reuse of plans.

Permanent address: 4373 Ridgepath Dr.
Dayton, OH 45424

104

T Form Approvedl

lbREPORT DOCUMENTATION PAGE O MB Nlo, 0704-.1)88

-pulflh 'edoning oIArcen *or mi coietion tIf n~orrmtOZion -s -titfmaea to average I our ow rftMoovse. nciuainq tthe time 'or eviewin; instructions. ýearctnin 3 atal wurces
gatherin afq maina'.taining the oats neeed. and commeting anda re'w*ernq tnC :oilection of information I"rt c;~~lSrqllqtt ~df jmr r 3l1 er i¶cec! t orthis
collectbon Qf "Iftffmatlon. ncluairiq suggestions ?or reducingq -hisorde !,)e No .Va'lqton Heeaauarteei Services. Directorate tor nitor'ation 00ae'.:ons am Rwocy'. '2'S ertefson
0aail Higtwav. 3uite 1 ýC4 A;lnqto, J A .22024302. andto the Otfce of AMaa...qemefand Budget. ioerwork ReducOtinProject (0704-a158). javsnmgtoft. XC ý050.

1. AGENCY USE ONLY (Leave on) 2.REPORT DATE 3. REPORT TYPE AND DATES COVERED
lineL994Doctoral Dissertation

4. TITLE AND SUBTITLE S. FUNDING NUMBERS

Searching For Plans Using a Hierachy of Le4arne Macro and Seleciive Reuse

6. AUTHOR(S)

Dongias E. Dyer. Capi US"P

7. PERFORMING ORGANIZATION NAME(S) AND AOORESS(ES) 8. PERFORMING ORGANIZATION
REPORT NUMBER

Air Pixw instItute of Techno&og. WPAFB OH 45433-6583 AFIT/S,0ENG94J-O1

9. SPONSORING / MONITORING AGENCY NAME(S) AND AOORESS(ES) 10. SPONSORING t MONITORING
AGENCY REPORT NUMBER

RI.X3 (Naithip FoWWnoe D
525 Brooks Road
(kiffiss A.M. NY 13441-5700

11. SUPPLEMENTARY NOTES

12s. DISTRIBUTION/I AVAILABILITY STATEMENT *12b. DISTRIBUTION CODE

Appowed for Pablc Releame Disotribtir Udnlizited

13. ABSTRACT (Maximum 200*word)
ThkIsIIi musls I , a ww spnato injuevigg fth pefannan of a naw pbanau selective rawe. I mamr planning.
rmusscan nsknltipooml rpufoiace~whanpianing withonly pihntiolp -ws apicnmw thatns bewam ued th

mai~c~. heuilhy o~ea~mbe~tathbmdssof xuseaosztweigdby tecostof raieviga macmuto mus
and due cad of sicng ftwgIt ft he seamel space caussed by cmiideftngan candktbos. Seecive rmus contsain the
Iza mof the us spacbylmi gfthsumbeof mseancddidst audnuedamlhimite seacreqsind by caz~admng
a*l thes 1iu can~iimtha do eail no addiuimm wo& Preinsly. paeufmxae inopmueat in a macm plannm hos bem
pousbleadny by slectrive p leain. Uniftb sltve leming, selectie rnmuse w owudoab a leasng agppostnity that mght
have vahnein idmbn rhe s-1 lv*ing.Thi -usc fdevelped a nwmpoy amil-d mieal thod which wincestecostof
retriv*n a mewu cmieb hlhly ID sae amuch A maOWlnnr(IGE) was implemeaid to explai selective reuse To
inpuvedthe obabilty ofbinicilmas.HINGiE aeam in a spacof plans usnfhnmcically-trM~ctur serc ethod
thet nuides -dip opposnitis fx wmue

14. SUBECT TERMS 15. NUMBER OF PAGES

P~ag Lasing P ing.JmlxedRainval ~'~~' ul~16. PRICE CODE

17. SECURITY CLASSIFICATION 1ll. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT
OFRPR OF THIS PAGE OF ABSTRACT

NSQd7501-O2B0-SSOO Standard Form 298 (Rev. 2-89)
2WS.102

